• Title/Summary/Keyword: Hadamard product (convolution)

Search Result 23, Processing Time 0.018 seconds

SOME PROPERTIES OF CERTAIN CLASSES OF FUNCTIONS WITH BOUNDED RADIUS ROTATIONS

  • NOOR, KHALIDA INAYAT
    • Honam Mathematical Journal
    • /
    • v.19 no.1
    • /
    • pp.97-105
    • /
    • 1997
  • Let $R_k({\alpha})$, $0{\leq}{\alpha}<1$, $k{\geq}2$ denote certain subclasses of analytic functions in the unit disc E with bounded radius rotation. A function f, analytic in E and given by $f(z)=z+{\sum_{m=2}^{\infty}}a_m{z^m}$, is said to be in the family $R_k(n,{\alpha})n{\in}N_o=\{0,1,2,{\cdots}\}$ and * denotes the Hadamard product. The classes $R_k(n,{\alpha})$ are investigated and same properties are given. It is shown that $R_k(n+1,{\alpha}){\subset}R_k(n,{\alpha})$ for each n. Some integral operators defined on $R_k(n,{\alpha})$ are also studied.

  • PDF

Fekete-Szegö Problem for a Generalized Subclass of Analytic Functions

  • Orhan, Halit;Yagmur, Nihat;Caglar, Murat
    • Kyungpook Mathematical Journal
    • /
    • v.53 no.1
    • /
    • pp.13-23
    • /
    • 2013
  • In this present work, the authors obtain Fekete-Szeg$\ddot{o}$ inequality for certain normalized analytic function $f(z)$ defined on the open unit disk for which $$\frac{{\lambda}{\beta}z^3(L(a,c)f(z))^{{\prime}{\prime}{\prime}}+(2{\lambda}{\beta}+{\lambda}-{\beta})z^2(L(a,c)f(z))^{{\prime}{\prime}}+z(L(a,c)f(z))^{{\prime}}}{{\lambda}{\beta}z^2(L(a,c)f(z))^{{\prime}{\prime}}+({\lambda}-{\beta})z(L(a,c)f(z))^{\prime}+(1-{\lambda}+{\beta})(L(a,c)f(z))}\;(0{\leq}{\beta}{\leq}{\lambda}{\leq}1)$$ lies in a region starlike with respect to 1 and is symmetric with respect to the real axis. Also certain applications of the main result for a class of functions defined by Hadamard product (or convolution) are given. As a special case of this result, Fekete-Szeg$\ddot{o}$ inequality for a class of functions defined through fractional derivatives are obtained.

APPLICATION OF CONVOLUTION THEORY ON NON-LINEAR INTEGRAL OPERATORS

  • Devi, Satwanti;Swaminathan, A.
    • Korean Journal of Mathematics
    • /
    • v.24 no.3
    • /
    • pp.409-445
    • /
    • 2016
  • The class $\mathcal{W}^{\delta}_{\beta}({\alpha},{\gamma})$ defined in the domain ${\mid}z{\mid}$ < 1 satisfying $Re\;e^{i{\phi}}\((1-{\alpha}+2{\gamma})(f/z)^{\delta}+\({\alpha}-3{\gamma}+{\gamma}\[1-1/{\delta})(zf^{\prime}/f)+1/{\delta}\(1+zf^{\prime\prime}/f^{\prime}\)\]\)(f/z)^{\delta}(zf^{\prime}/f)-{\beta}\)$ > 0, with the conditions ${\alpha}{\geq}0$, ${\beta}$ < 1, ${\gamma}{\geq}0$, ${\delta}$ > 0 and ${\phi}{\in}{\mathbb{R}}$ generalizes a particular case of the largest subclass of univalent functions, namely the class of $Bazilevi{\check{c}}$ functions. Moreover, for 0 < ${\delta}{\leq}{\frac{1}{(1-{\zeta})}}$, $0{\leq}{\zeta}$ < 1, the class $C_{\delta}({\zeta})$ be the subclass of normalized analytic functions such that $Re(1/{\delta}(1+zf^{\prime\prime}/f^{\prime})+1-1/{\delta})(zf^{\prime}/f))$ > ${\zeta}$, ${\mid}z{\mid}$<1. In the present work, the sucient conditions on ${\lambda}(t)$ are investigated, so that the non-linear integral transform $V^{\delta}_{\lambda}(f)(z)=\({\large{\int}_{0}^{1}}{\lambda}(t)(f(tz)/t)^{\delta}dt\)^{1/{\delta}}$, ${\mid}z{\mid}$ < 1, carries the fuctions from $\mathcal{W}^{\delta}_{\beta}({\alpha},{\gamma})$ into $C_{\delta}({\zeta})$. Several interesting applications are provided for special choices of ${\lambda}(t)$. These results are useful in the attempt to generalize the two most important extremal problems in this direction using duality techniques and provide scope for further research.