• Title/Summary/Keyword: Habitat suitability index (HSI) model

Search Result 26, Processing Time 0.019 seconds

Change of Fish Habitat in a Downstream Reach of a Stream Due to Dam Construction (댐 건설에 따른 하류 하도 어류 서식처 변화 분석)

  • Kim, Seung Ki;Choi, Sung-Uk
    • Ecology and Resilient Infrastructure
    • /
    • v.1 no.2
    • /
    • pp.61-67
    • /
    • 2014
  • Dam construction changes flow regime and stream morphology in the downstream reach. These affect the ecosystem of downstream reach. This study provides the assessment of the impact of dam construction on the downstream fish habitat. For this, physical habitat simulations are carried out. The quasi-steady model is used for hydraulic simulation, The hydraulic model used in the present study is capable of simulating the morphological change due to sediment transport. The change of the fish habitat condition is investigated using the flow scenarios before and after the dam construction. Simulation results indicate that the habitat suitability decreases frequently due to hydropeaking after dam construction. In addition, erosion is expected to occur in a reach downstream of dam. This is a long term effect due to the shut-down of sediment supply from the upstream reach.

Estimation of Habitats Suitability Index based on Hydraulic Conditions (수리조건을 이용한 생물서식처 적합도 지수 산정 -홍천강을 대상으로-)

  • Lee, Jae-Yil;Lee, Gyu-Sung;Ahn, Hong-Kyu;Ha, Sung-Ryong
    • Journal of Wetlands Research
    • /
    • v.13 no.1
    • /
    • pp.149-160
    • /
    • 2011
  • This study developed a HSI for the creatures in Hongcheon River in order to analyze the conditions proper for habitats. For the index, the investigator identified a total of seven items encompassing hydraulic characteristics such as flow velocity and water depth, and water quality characteristics such as water temperature, BOD, DO, TN, and TP. The subject river was simulated, inspected, and revised with a two-dimensional river model (RMA-2) and water quality model (QUAL2E). Using GIS, the developed index was divided by section by reflecting river characteristics and compared and analyzed with the statistics. The river was divided into a total of 29 reaches by reflecting the basic characteristics and the features of the hydraulic coefficient on the cross-sections of the river. According to the analysis results, the fish scored the highest mean of the overall habitat suitability index of 0.769 at reach 27. Each of the variables had the following mean values: 0.122 m/s for flow velocity, 0.782m for water depth, $14.3^{\circ}C$ for water temperature, 0.68 mg/l for BOD, 10.3 mg/l for DO, 2.4 mg/l for TN, and 0.0121mg/l for TP.

Investigation of the change in physical habitat in the Geum-gang River by modifying dam operations to natural flow regime (자연유황 회복을 위한 댐 운영에 따른 금강의 물리서식처 변화 분석)

  • Choi, Byungwoong;Jang, Jiyeon;Choi, Sung-Uk
    • Journal of Korea Water Resources Association
    • /
    • v.54 no.11
    • /
    • pp.985-998
    • /
    • 2021
  • In general, the upstream dam changes downstream flow regime dramatically, i.e., from natural flow regime to hydropeaking flows. This study investigates the impact of the natural flow pattern on downstream fish habitat in a regulated river in Korea using the physical habitat simulation. The study area is a 13.4 km long reach of the Geum-gang River, located downstream from the Yongdam Dam, Korea. A field monitoring revealed that three fish species are dominant, namely Zacco platypus, Coreoleuciscus splendidus, and Opsariichthys bidens, and they account for 70% of the total fish community. Specially, Opsariichthys bidens is an indigenous species in the Geum-gang River. The three fish species are selected as target fish species for the physical habitat simulation. The Nays2D model, a 2D shallow water equation solver, and the HSI (Habitat Suitability Index) model are used for hydraulic and habitat simulations, respectively. To assess the impact of the natural flow pattern, this study uses the annual natural flow regime and hydropeaking flows from the dam. It is found that the natural flow regime increases significantly the Composite Suitability Index (CSI) in the study reach. Then, using the Building Block Approach (BBA), the scenarios for the modifying dam operations are presented in the study reach. Both Scenario 1 and scenario 2 are proposed by using the hydrological method considering both magnitude and duration of the inflow and averaging the inflow over each month, respectively. It is revealed that the natural flow regime embodied in scenario 1 and scenario 2 increases the Weighted Usable Area (WUA) significantly, compared to the hydropeaking flows. In conclusion, the modifying the dam operations by restoring to the natural flow pattern is advantageous to fish community.

A Study on the Analytic Unit of Habitat Suitability Assessment and Selection in Conservation Areas for Leopard Cat(Prionailurus bengalensis) - Focus on Chungcheong Province Area - (삵의 서식지 적합성 평가를 위한 분석단위 설정 및 보전지역 선정 - 충청도 지역을 중심으로 -)

  • Lee, Dong-Kun;Song, Won-Kyong
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.36 no.5
    • /
    • pp.64-72
    • /
    • 2008
  • The purpose of this study is to compare a habitat suitability grid unit included within a radius of 100m and $1km^2,\;2km^2,\;4km^2$ watershed units in order to predict suitable habitats for Chungcheong province's endangered leopard species(Prionailurus bengalensis). Other developed countries have carried out habitat assessment and established management policies for species conservation using such methods as HEP(Habitat Evaluation Procedures), HSI(Habitat Suitability Index) and GAP(Gap Analysis Program), etc. In accordance with these studies, many evaluation methods for habitat conservation have been proposed in Korea, but these studies are lacking in consideration of analytic units and general application of analysis results. This study predicted leopard habitat using a logistic regression analysis according to analytic units by data from 56 location and 8 sources of environmental data, including elevation, slope, forest area, land cover, roads, water, broadleaf trees, and human habitation. Moreover, the habitat suitability assessment unit was confirmed by a model comparison process encompassing model explanation. verification, and application on a regional scale. Results showed that assessment methods that took into consideration areas in and around the location points were beneficial in predicting habitat and that the assessment unit was appropriate for a 30m grid unit including areas within a radius of 100m and a $1km^2$ watershed unit in Chungcheong Province. This study suggests a method for regional habitat conservation to complement existing conservation area selection methods, and the results are expected to be used in conservation area selection and ecosystem management policies for endangered species.

Development of Seasonal Habitat Suitability Indices for the Todarodes Pacificus around South Korea Based on GOCI Data (GOCI 자료를 활용한 한국 연근해 살오징어의 계절별 서식적합지수 모델 개발)

  • Seonju Lee;Jong-Kuk Choi;Myung-Sook Park;Sang Woo Kim
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.6_2
    • /
    • pp.1635-1650
    • /
    • 2023
  • Under global warming, the steadily increasing sea surface temperature (SST) severely impacts marine ecosystems,such as the productivity decrease and change in marine species distribution. Recently, the catch of Todarodes Pacificus, one of South Korea's primary marine resources, has dramatically decreased. In this study, we analyze the marine environment that affects the formation of fishing grounds of Todarodes Pacificus and develop seasonal habitat suitability index (HSI) models based on various satellite data including Geostationary Ocean Color Imager (GOCI) data to continuously manage fisheries resources over Korean exclusive economic zone. About 83% of catches are found within the range of SST of 14.11-26.16℃,sea level height of 0.56-0.82 m, chlorophyll-a concentration of 0.31-1.52 mg m-3, and primary production of 580.96-1574.13 mg C m-2 day-1. The seasonal HSI models are developed using the Arithmetic Mean Model, which showed the best performance. Comparing the developed HSI value with the 2019 catch data, it is confirmed that the HSI model is valid because the fishing grounds are formed in different sea regions by season (East Sea in winter and Yellow Sea in summer) and the high HSI (> 0.6) concurrences to areas with the high catch. In addition, we identified the significant increasing trend in SST over study regions, which is highly related to the formation of fishing grounds of Todarodes Pacificus. We can expect the fishing grounds will be changed by accelerating ocean warming in the future. Continuous HSI monitoring is necessary to manage fisheries' spatial and temporal distribution.

Estimation of Ecological Flow and Habitat Suitability Index at Jeonju-Cheon Upstream (전주천 상류부의 서식처 적합도 지수 및 생태유량 산정)

  • Kim, Kyeoung-Oh;Park, Young-Ki;Kang, Jae-Il;Lee, Byung-Suk
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.38 no.2
    • /
    • pp.47-55
    • /
    • 2016
  • In this study, WUA (Weighted Usable Area) based on the Instream Flow Incremental Methodology (IFIM) was calculated to determine ecological flow at JeonJu-Cheon by using River2D model. To calibrate River2D, simulation results for low flow conditions of River2D were compared with calibrated HEC-RAS simulation results and the optimum parameters were determined. The results were RMSE (0.18), NSE (0.71) and coefficient of determination (0.78) for velocity and RMSE (0.02), NSE (0.71), coefficient of determination (0.73) for water depth. The result shows that the model successfully simulates the water flows. A selected target fish species to build the habitat suitability index were composed of Zaccoplatypus and Coreoleuciscus splendidus. These species showed the highest occurrences over the past decade in f ish monitoring. Also, The WUA-Discharge curve was calculated with the suitability index in a medium flow conditions. From the result, WUA is changed according to flowrate. In the flowrate-WUA/A graph, ecological flow can be determined at $1.8{\sim}2.0m^3/s$ for Zaccoplatypus $2.0m^3/s$ and Coreoleuciscus splendidus $1.8m^3/s$ at JeonJu-Cheon upstream. When compared with flow-duration analysis, it is demonstrative that simulation results fitted ecological flow considering quantity of available habitat for each fish species.