• Title/Summary/Keyword: Habitat restoration

Search Result 496, Processing Time 0.025 seconds

The Evaluation of River Naturalness for Biological Habitat Restoration : II. Application of Evaluation Method (하천의 생물서식처 복원을 위한 하천자연도평가 : II. 평가방법의 적용)

  • Park, Bong-Jin;Shin, Jong-Iee;Jung, Kwan-Sue
    • Journal of Korea Water Resources Association
    • /
    • v.38 no.1
    • /
    • pp.49-57
    • /
    • 2005
  • The investigation and evaluation of river naturalness was conducted for sample rivers-Hongchungang, Mihochun, Naesungchun - using the method from previous paper 'The Evaluation of River Naturalness for Habitat Restoration : I. Proposal of Evaluation Method'. As a result, Hongchungang and Naesungchun, Mihochun showed 2$^{nd}$ Grades with averaged point 1.92, 1.43, and 2.31. Also comparison and examination of the relationship between water quality and river naturalness shows a little relation with coefficient of correlation 0.575. This result means that the evaluation of river naturalness can be possibly used as index to evaluate river ecology, from a different standpoint with water quality.oint with water quality.

Habitat Analysis Study of Honeybees(Apis mellifera) in Urban Area Using Species Distribution Modeling - Focused on Cheonan - (종분포모형을 이용한 도시 내 양봉꿀벌 서식환경 분석 연구 - 천안시를 중심으로 -)

  • Kim, Whee-Moon;Song, Won-Kyong;Kim, Seoung-Yeal;Hyung, Eun-Jeong;Lee, Seung-Hyun
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.20 no.3
    • /
    • pp.55-64
    • /
    • 2017
  • The problem of the population number of honeybees that is decreasing not only domestically but also globally, has a great influence on human beings and the entire ecosystem. The habitat of honeybees is recognized to be superior in urban environment rather than rural environment, and predicting for habitat assessment and conservation is necessary. Based on this, we targeted Cheonan City and neighboring administrative areas where the distribution of agricultural areas, urban areas, and forest areas is displayed equally. In order to predict the habitat preferred by honeybees, we apply the Maxent model what based on the presence information of the species. We also selected 10 environmental variables expected to influence honeybees habitat environment through literature survey. As a result of constructing the species distribution model using the Maxent model, 71.7% of the training data were shown on the AUC(Area Under Cover) basis, and it was be confirmed with an area of 20.73% in the whole target area, based on the 50% probability of presence of honeybees. It was confirmed that the contribution of the variable has influence on land covering, distance from the forest, altitude, aspect. Based on this, the possibility of honeybee's habitat characteristics were confirmed to be higher in wetland environment, in agricultural land, close to forest and lower elevation, southeast and west. The prediction of these habitat environments has significance as a lead research that presents the habitat of honeybees with high conservation value of ecosystems in terms of urban space, and it will be useful for future urban park planning and conservation area selection.

Developing habitat suitability index for habitat evaluation of Nannophya koreana Bae (Odonata: Libellulidae)

  • Hong Geun, Kim;Rae-Ha, Jang;Sunryoung, Kim;Jae-Hwa, Tho;Jin-Woo, Jung;Seokwan, Cheong;Young-Jun, Yoon
    • Journal of Ecology and Environment
    • /
    • v.46 no.4
    • /
    • pp.324-333
    • /
    • 2022
  • Background: The Korean scarlet dwarf, Nannophya koreana Bae (Odonata: Libellulidae), is anendangered dragonfly with an increasing risk of extinction owing to rapid climate changes and human activities. To prevent extinction, the N. koreana population and their habitat should be protected. Therefore, suitable habitat evaluation is important to build the N. koreana restoration project. The habitat suitability index model (HSI) has been widely used for habitat evaluation in diverse organisms. Results: To build a suitable HSI model for N. koreana, 16 factors were examined by seven experienced researchers. A field survey for N. koreana observed sites and spatial analysis were conducted to improve the model. Five factors were finally selected by this procedure (crown density, open water surface, water depth, pioneer plant cover, and type of water source). Finally, the N. koreana HSI model was generated with the five adjusted factors based on interview, field survey, and spatial analysis. This model was validated by a current N. koreana habitat in 2021. With this model, 46 sites in Uljin-gun, Korea, were surveyed for N. koreana habitats; five sites were identified as core habitats and seven as potential core habitats. Conclusions: This model will serve as a strong foundation for the N. koreana restoration project and as a reference for future studies on N. koreana and other endangered insect populations. Further analysis and long-term data will improve the efficacy of this model and restore endangered wildlife.

Analysis of Channel Habitat Characteristics for Soundness of Fish Community at Wonju-stream (원주천의 어류군집 건전화를 위한 하도의 서식구조 특성분석)

  • Choi, Heung Sik;Choi, Jun Kil
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.3B
    • /
    • pp.311-317
    • /
    • 2009
  • Similarity indices between sampling sites are calculated and cluster analysis of fish community is carried out by UPGMA based on investigating fish fauna and water environment. The restoration indicators as target species of Wonju stream are selected Cottus poecilopus, Zacco temmincki, and Zacco platypus along upper, middle, and lower streams, respectively. For better habitat suitability, low flow increasing and induced water quality improving must be secured by sewer system rearrangement and watershed management. Composite habitat suitability of Zacco temmincki as target species at middle stream of Wonju stream improve significantly by low flow increasing, which is very important factor to improve habitat suitability. The changes of hydraulics of depth and velocity govern the habitat suitability in general, but the effects are not significant. Low flow increasing with the change of 10% reducing of lower channel improves the composite habitat suitability of 0.37~0.78 to their origin of 0.1~0.25, which represent the channel restoration scheme of Wonju stream for enhancing the habitat suitability of fish community.

Habitat Restoration Initiative for Endangered Species Parnassius bremeri (Lepidoptera: Papilionidae) in Korea (멸종위기종 붉은점모시나비의 서식지 복원구상)

  • Kim, Do-Sung;Park, Seong-Joon;Shin, Young-Kyu;Park, Doo-Sang
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.39 no.6
    • /
    • pp.98-109
    • /
    • 2011
  • Habitat restoration initiative is an important factor for the on-site preservation of butterflies. A new habitat necessitates the investigation of the ecology of the butterfly, the landscape of the habitat, the work process, and a cost analysis. In this study, these factors were analyzed through1) re-consideration of the secured results from three years of field work, and 2) a habitat area estimation conducted according to the presence or absence of larvae and adults via a Parnassius bremeri Bremer survey. The investigation of the natural habitat, done for both larvae and adult butterflies found in South Korea, suggested that multiple patches with a minimum size exceeding $300m^2$ and with an average size of about $1,600m^2$were required for survival of this butterfly. Therefore, more than five patches should be considered for butterfly habitat and patches should have similarity to the present habitat environment with transplantation plans for diet plants and honeydew plants. In addition, to activate the migration of the butterfly, cutting down trees that are obstacles to migration, minimizing the distance between patches and the addition of a stepping patch are also required. A patch connectivity analysis showed that patches should be located within 300m of neighboring patches, as the migration of the butterfly will fail if it is more than 600m. Additionally, more than $10,000m^2$ for a single patch or a patch network composed more than five patches over $1,600m^2$ in size were recommended, with a total patch size of $8,000m^2$. Additionally, neighboring multiple patch networks are more desirable than a single habitat in the event a cyclic habitat pattern arises. In this study, we suggest a habitat restoration and optimal prerequisites for a butterfly habitat. It is expected that this research will lead to the creation of a good model for the restoration of butterfly species.

An Analytical Study of Foreign Researches and Examples on Ecological Restoration for the Small Stream (샛강 생태복원을 위한 해외 사례 연구의 고찰)

  • Kwon, Tae-Ho;Park, Jae-Hyeon;Kim, Dong-Wook
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.7 no.5
    • /
    • pp.26-37
    • /
    • 2004
  • Most domestic small rivers and streams due to industrialization and urbanization have managed by concrete structures. The environmental functions of the river and stream are disappearing and urban streams play only the role of drainage systems. Also, the researches to restore natural streams are something yet to develop and not established the restoration for ecological functions of a small stream. Therefore the researches are required to develop ecological engineering system for watershed management system to handle various pollutants with restoration for ecological functions of a small stream. To develop this, the ecological engineering system for watershed management system could be developed with ecological conservation. In addition, ecological engineering system for watershed management system should be prior to conserve the habitat of biological resources and water conservation and applied to the original shape of streams. Also, it should be designed to restore the micro-topography of stream, the habitat of plant population in watershed. It is needed to develop the integrated researches to restore a small stream ecosystem.

A Study on the Development of Design Model of Ecological Park as Stormwater Storage Facilities (저류지 생태공원 설계모형 개발에 관한 연구)

  • Byeon, Wooil
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.9 no.3
    • /
    • pp.1-16
    • /
    • 2006
  • The purpose of this study is to develop design model of ecological park as stormwater storage facilities. The results are as follows : First, the design model of ecological park as stormwater storage facilities consider ecological and landscape characteristics such as high efficiency of land use, function as disaster prevention, ecological water purification, formation of habitat for flora and fauna. Second, this study demonstrates two types of plane structure and eight types of designed section. They can be combined and designed depending on conditions of each site. The facilities of stormwater storage conduct disaster prevention system and ecological park. Retention pond in stormwater storage facilities for ecological park also should be made for ecological restoration in the site. Third, the ecological park provide the basis for ecological network from in-site to out-site. Therefore its conservation and restoration plan consider the ecosystems of the site. Fourth, the most important factor for maintenance and management for retention pond is keeping water quality. Sustainable Structured wetland Biotop system is suggested for ecological water purification system in the retention pond which is one of the constructed wetland system using multi-celled aquatic plant and pond. This system can also provide habitat for animals and plants, water friendly park for men, and beautiful landscape.

Reproducing and Restoring Space Planning for Red Fox (Vulpes vulpes) Restoration - Focusing on Sobaeksan National Park - (여우(Vulpes vulpes) 복원을 위한 증식·복원장 공간 계획에 관한 연구 - 소백산국립공원 지역을 사례로 -)

  • Cho, Dong-Gil;Shim, Yun Jin;Hong, Jin-Pyo;Cha, Jin-Yeol
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.16 no.4
    • /
    • pp.1-14
    • /
    • 2013
  • A species restoration plan requires a process where the first is to thoroughly study the target species, second is to provide them with an onsite reproduction and adaptation period, and finally, third is to release them to their natural habitat. This study focuses on the space planning for target species' successful onsite reproduction and adaptation. For the study, a site planning near Sobaeksan National Park was implemented with Red Fox's behavior and habitat characteristics in mind for its recovery, reproduction, and natural adaptation. During site selection and planning, the basic aim was to incorporate the existing site as much as possible thus reducing the impact on the environment from the recovery plan. In addition, for a stable recovery of the Red Fox population, the site was classified into three different areas : core area, buffer zone, and transition area. Then, the facilities that help Red Fox's reproduction and adaptation such as reproduction center, foraging site, adaptation training center were planned. Under the condition that the site will be off limit to the public, a limited number of paths for monitoring was provided. For the site's vegetation, the existing species were planted as much as possible with the addition of plants that the Red Fox consume. The facilities included as Red Fox's habitat were fox burrows for hiding and ecological ponds for drinking. From this study, the recovery of the endangered fox species is expected as well as the contribution to an effort to increase of awareness toward the biological resources in Korea through Nagoya protocol. Furthermore, it has the potential to change the public's attitude toward endangered species recovery projects through publicizing and providing experience to the national park visitors.

Assessment of the environmental flow and habitat of the river ecosystem through ecosystem function model (생태계 기능모의를 통한 하천의 환경유량 및 서식처 평가)

  • Na, Jong-Moon;Park, Seo-Yeon;Cho, Yean-Hwa;Lee, Joo-Heon
    • Journal of Korea Water Resources Association
    • /
    • v.54 no.3
    • /
    • pp.191-201
    • /
    • 2021
  • Rivers have been damaged due to rapid urbanization, and river management has been carried out focusing on flow and flood control functions. Recently, interest in river restoration, emphasizing the environmental aspects of rivers, is increasing, but the beginning of river restoration requires an appropriate evaluation of the environmental flow required for the ecosystem. This study analyzed the effects on the habitat of the river ecosystem by estimating the changes in flow regime and environmental flow following the construction of the Buhang dam in Gamcheon, the first tributary of the Nakdong River. To evaluate the environmental flow, the dominant species of Gamcheon, Zacco Platypus, and the protected species Squalidus gracilis majime, and riparian vegetation were selected, and the environmental flow was calculated using the HEC-EFM (Ecosystem Function Model). The evaluated environmental flow was linked with hydraulic analysis and GIS platform, and habitat area change and habitat connectivity analysis before and after dam construction were performed by spatial habitat analysis in the river. Based on the results of this study, it can be used as a river restoration project and a dam operation plan considering the river environment through the calculation of environmental flow and habitat connectivity analysis to improve the habitat of the river ecosystem.

A case study of the habitat expansion of the Asiatic black bear (Ursus thibetanus ussuricus) (반달가슴곰의 서식지 확대 사례)

  • Kim, Jeong-Jin;Kim, Tae-Wook;Choi, Ju-Yeol;Park, Seok-Ho;Han, Sang-Hyun;Lee, Sa-Hyun;Oh, Hong-Shik
    • Korean Journal of Environmental Biology
    • /
    • v.37 no.2
    • /
    • pp.196-203
    • /
    • 2019
  • Habitat loss by industrialization, urbanization, and poaching reduced the population of Asiatic black bear (Ursus thibetabus ussuricus) population in South Korea in the late 20th Century. In the early 2000s, the Korean Government had begun a restoration project of Asiatic black bear. In 2017, a bear was found in Mt. Sudosan, Gimcheon, Gyeongsangbuk-do, approximately 80 km from Mt. Jirisan where the bear was first released. Genetic analysis confirmed that this bear was one of the Jirisan bear population, estimating that this bear escaped from its habitat. After trapping this bear in Mt. Sudosan, it was rereleased again in Mt. Jirisan, but this bear moved again to Mt. Sudosan. After 2nd trapping and releasing, this bear came back to Mt. Sudosan. In Mt. Sudosan, this bear covered a greater distance and moved more as compared to other Asiatic black bear in Mt. Jirisan. Today, this bear has its home range within Mt. Sudosan area after the third release, estimating that this bear is stable and active in this area. Our findings are the first case showing the interesting pattern of repetitive disperse activities and habitat expansion of Asiatic black bear. The results of this case are valuable information that can be used for wildlife conservation and restoration of endangered wildlife.