• Title/Summary/Keyword: Habitat change

Search Result 439, Processing Time 0.025 seconds

Predicting the suitable habitat distribution of Conyza sumatrensis under RCP scenarios (RCPs 기후변화 시나리오에 따른 큰망초(Conyza sumatrensis)의 적합 서식지 분포 예측)

  • Myung-Hyun Kim;Soon-Kun Choi;Jaepil Cho;Min-Kyeong Kim;Jinu Eo;So-Jin Yeob;Jeong Hwan Bang
    • Korean Journal of Environmental Biology
    • /
    • v.40 no.1
    • /
    • pp.1-10
    • /
    • 2022
  • Global warming has a major impact on the Earth's precipitation and temperature fluctuations, and significantly affects the habitats and biodiversity of many species. Although the number of alien plants newly introduced in South Korea has recently increased due to the increasing frequency of international exchanges and climate change, studies on how climate change affects the distribution of these alien plants are lacking. This study predicts changes in the distribution of suitable habitats according to RCPs climate change scenarios using the current distribution of the invasive alien plant Conyza sumatrensis and bioclimatic variables. C. sumatrensis has a limited distribution in the southern part of South Korea. Isothermality (bio03), the max temperature of the warmest month (bio05), and the mean temperature of the driest quarter (bio09) were found to influence the distribution of C. sumatrensis. In the future, the suitable habitat for C. sumatrensis is projected to increase under RCP 4.5 and RCP 8.5 climate change scenarios. Changes in the distribution of alien plants can have a significant impact on the survival of native plants and cause ecosystem disturbance. Therefore, studies on changing distribution of invasive species according to climate change scenarios can provide useful information required to plan conservation strategies and restoration plans for various ecosystems.

Analysis of Future Bioclimatic Zones Using Multi-climate Models (다중기후모형을 활용한 동북아시아의 미래 생물기후권역 변화분석)

  • Choi, Yuyoung;Lim, Chul-Hee;Ryu, Jieun;Jeon, Seongwoo
    • Journal of Environmental Impact Assessment
    • /
    • v.27 no.5
    • /
    • pp.489-508
    • /
    • 2018
  • As climate changes, it is necessary to predict changes in the habitat environment in order to establish more aggressive adaptation strategies. The bioclimatic classification which clusters of areas with similar habitats can provide a useful ecosystem management framework. Therefore, in this study, biological habitat environment of Northeast Asia was identified through the establishment of the bioclimatic zones, and the impac of climate change on the biological habitat was analyzed. An ISODATA clustering was used to classify Northeast Asia (NEA)into 15 bioclimatic zones, and climate change impacts were predicted by projecting the future spatial distribution of bioclimatic zones based upon an ensemble of 17 GCMs across RCP4.5 and 8.5 scenarios for 2050s, and 2070s. Results demonstrated that significant changes in bioclimatic conditions can be expected throughout the NEA by 2050s and 2070s. The overall zones moved upward, and some zones were predicted to be greatly expanded or shrunk where we suggested as regions requiring intensive management. This analysis provides the basis for understanding potential impacts of climate change on biodiversity and ecosystem. Also, this could be used more effectively to support decision making on climate change adaptation.

A Habitat Characteristic of Population of Khingan Fir(Abies Nephrolepis) in Seoraksan National Park Using Landscape Indices (경관지수를 활용한 설악산국립공원 아고산대 분비나무개체군의 서식지 특성)

  • Lee, Ho-young;Park, Hong-chul;Lee, Na-yeon;Lee, Ho
    • Korean Journal of Environment and Ecology
    • /
    • v.34 no.2
    • /
    • pp.170-178
    • /
    • 2020
  • There are few landscape ecological analyses of Khingan fir (Abies nephrolepis) and other habitats of the sub-alpine zone in South Korea. In this study, we tried to quantitatively interpret and assess the habitat characteristics by analyzing 15 landscape indices according to the differences in tree layer coverage, in the Khingan fir habitat growing naturally in the sub-alpine zone of Seoraksan National Park. It was difficult to identify the tendency of landscape ecology to increase and decrease the tree layer coverage in the study site, which was the entire Khingan fir habitat in Seoraksan National Park. However, the Khingan fir habitat was found to be generally low in coverage, and population density as the tree layer coverage of less than 50 percent accounts for 85 percent of the total habitat. Moreover, the Khingan fir habitat in the 10 to 50 percent range was fragmented into a total of 286 patches, making it relatively less connected to the habitat. The total edge length and edge density, which could determine the edge effect of the main part according to the physical form, were the highest in the habitat of 26 to 50 percent coverage, indicating a relatively high impact from outside than habitats of other coverages. The shape with the tree layer coverage of between 10 and 50 percent was more complex even with patches of the same size, and it is believed that these characteristics make it more susceptible to habitat fragmentation and external confounding. We expect that the results of this study can be useful for time series analysis of spatial expansion or reduction of the Khingan fir habitat in Seoraksan National Park and provide the reference data for the morphological change and movement of patches and the connectivity and break-off between forests.

A Study on Interdisciplinary Education Model of Using Climate Change Film-Focusing on Documentary An Inconvenient Truth (기후변화 영화를 활용한 융합교육 모형연구: 다큐멘터리 <불편한 진실>을 중심으로)

  • Hwang, Young-mee;Oh, Jung-jin
    • Journal of Engineering Education Research
    • /
    • v.19 no.5
    • /
    • pp.57-64
    • /
    • 2016
  • This study is about interdisciplinary education model of using Davis Guggenheim's documentary film on global warming which is a big concern in climate change issues, An Inconvenient Truth. It based on Al Gore's slide speech. Through a course student analyzed the cause and phenomenon of global warming resulted from increase of $CO_2$ by using fossil fuel and its environmental science effects-heat wave, desertification, tornado, hurricane, sea level rise caused by melting glaciers, destroying ecosystem like habitat degradation of wild animals, for example polar bear, extreme cold wave caused by change of ocean currents- of global warming. After, student discussed of efforts to prevent global warming. This educational model is appropriate for lower grade student of environmental engineering and also available for converged majors or general education class.

The Application of Island Biogeography and Habitat Fragmentation Theory to the Conservation of Protected Areas in Korea (우리나라 보호지역의 보존에 대한 도서생물지리학과 서식처 분획화 이론의 적용)

  • 김용식;마이클모운더
    • Korean Journal of Environment and Ecology
    • /
    • v.6 no.1
    • /
    • pp.12-24
    • /
    • 1992
  • The application of island biogepgraphy and habitat fragmentation theory to protected area management in Korea is discussed. The accelerating destruction and degradation of natural habitats, with the associated erosion of biodiversity, demands and urgent response and a critical review of attitudes to protected area management. The flora of Korea will continue to change in both distribution and status in response to these man induced changes. The conservation and management of ecosystems, because of the variety of threats and the varying levels of biodiversity to be conserved, requires an integrated approach. Such an approach assesses the variety of threats, prevalent and potential, and responds with a strategy combining habitat, species and population management. The application of island biogeography, habitat fragmentation and edge effects theory to conservation strategies in Korea will assist in the understanding of the dynamic relationships between the isolation. degradation and fragmentation of surviving habitat patches. The application of such approaches is discussed with recommendations made for the adoption of an increasingly scientific approach to plant conservation based upon a knowledge of the conservation status and distribution characteristics of the Korean flora. Such data combined with demographic studies on topics such as Minimum Viable Population Size will allow an integrated approach to plant and habitat conservation to progress.

  • PDF

Distribution Prediction of Korean Clawed Salamander (Onychodactylus koreanus) according to the Climate Change (기후변화에 따른 한국꼬리치레도롱뇽(Onychodactylus koreanus)의 분포 예측에 대한 연구)

  • Lee, Su-Yeon;Choi, Seo-yun;Bae, Yang-Seop;Suh, Jae-Hwa;Jang, Hoan-Jin;Do, Min-Seock
    • Korean Journal of Environment and Ecology
    • /
    • v.35 no.5
    • /
    • pp.480-489
    • /
    • 2021
  • Climate change poses great threats to wildlife populations by decreasing their number and destroying their habitats, jeopardizing biodiversity conservation. Asiatic salamander (Hynobiidae) species are particularly vulnerable to climate change due to their small home range and limited dispersal ability. Thus, this study used one salamander species, the Korean clawed salamander (Onychodactylus koreanus), as a model species and examined their habitat characteristics and current distribution in South Korea to predict its spatial distribution under climate change. As a result, we found that altitude was the most important environmental factor for their spatial distribution and that they showed a dense distribution in high-altitude forest regions such as Gangwon and Gyeongsanbuk provinces. The spatial distribution range and habitat characteristics predicted in the species distribution models were sufficiently in accordance with previous studies on the species. By modeling their distribution changes under two different climate change scenarios, we predicted that the distribution range of the Korean clawed salamander population would decrease by 62.96% under the RCP4.5 scenario and by 98.52% under the RCP8.5 scenario, indicating a sharp reduction due to climate change. The model's AUC value was the highest in the present (0.837), followed by RCP4.5 (0.832) and RCP8.5 (0.807). Our study provides a basic reference for implementing conservation plans for amphibians under climate change. Additional research using various analysis techniques reflecting habitat characteristics and minute habitat factors for the whole life cycle of Korean-tailed salamanders help identify major environmental factors that affect species reduction.

Developing an Endangered Species Habitat Management System based on Location Information (위치정보 기반 멸종위기종 서식지 관리시스템 개발)

  • Kim, Sun-Jib;Kim, Sang-hyup
    • Journal of Internet of Things and Convergence
    • /
    • v.6 no.3
    • /
    • pp.67-73
    • /
    • 2020
  • The research status of endangered amphibians in Korea was mainly studied the life-cycle and distribution status of species from the 1980s to the early 2000s. Although a relatively diverse range of studies have been conducted on mackerels, studies on habitat prediction, analysis, change and management are insufficient. WEB, which provides biota information using location information in Korea, is a site operated by the National Bio Resource Center under the Ministry of Environment, but there is no information on endangered species and general species information has also been found to be very scantily. For this research, we secured a database of location information of Narrow-mouth frog, an endangered species, by combining literature and field research, and established a system by applying new technologies and open-based platform technologies that can be easily accessed by non-technical personnel of IT among IT technologies. The system was divided into administrator functions and user functions to prevent indiscriminate sharing of information through authentication procedures through user membership of users. The established system was authorized to show the distance between the current location and the location of the Narrow-mouth frog. Considering the ecological characteristics of the Narrow-mouth frog, which is an endangered species, a radius of 500m was marked to determine the habitat range. The system is expected to be applied to the legal system to change existing protected areas, etc. and to select new ones. It is estimated that practical reduction measures can be derived by utilizing the development plan for reviewing the natural environment. In addition, the deployed system has the advantage of being able to apply to a wide variety of endangered species by modifying the information entered.

Distribution of the Kentish Plover (Charadrius Alexandrinus) Based on the 3rd National Ecosystem Survey and Its Adequacy as a Bioindicator (제 3차 전국자연환경조사를 이용한 흰물떼새(Charadrius alexandrinus)의 분포현황과 생물지표종의 제안)

  • Kim, Woo-Yuel;Bae, So-Yeon;Oh, Su-Jeung;Yoon, Hee-Nam;Lee, Jung-Hyo;Paek, Woon-Kee;Sung, Ha-Cheol
    • Korean Journal of Environment and Ecology
    • /
    • v.30 no.2
    • /
    • pp.155-164
    • /
    • 2016
  • In this study we analyzed the spatial and temporal distribution and preferred habitat type of the Kentish plover (Charadrius alexandrinus) based on the 3rd National Ecosystem Survey. Kentish plovers were observed in 97 maps out of a total 842 maps (11.8%) between 2006 and 2012, mainly along the western and southern coasts of Korea. They were also observed in the eastern coast of Korea, inland rivers (Han, Geum, Nakdong, Seomjin, and Yongsan River), the western and eastern coast of Jeju island, and Daecheong Island in the Yellow Sea. The observations were mainly made during the spring breeding season and migration seasons in spring and autumn. The occurrence of kentish plovers was positively influenced by the area of water and wetland according to the middle classification level of land cover type analysis and the area of coastal wetlands in the detailed classification level of land cover types. Most (90%) of the kentish plovers recorded maps had coastal wetlands. Kentish plovers were known to be susceptible to change of habitat. As the occurrence of kentish plovers could be associated with the habitat-change of coastal wetlands and it is possible to estimate the number of individuals, it is recommended that kentish plovers be used as a bioindicator species for the ecological assessment of ecosystem in intertidal zones.

Relationship between butterfly community and geographic location and ecological traits inhabiting agroecosystems (농업생태계에 서식하는 나비 군집 다양성과 이들에 영향을 주는 지리적 위치 및 생태적 특징과의 관계)

  • Jae-Young Lee;Sei-Woong Choi
    • Korean Journal of Environmental Biology
    • /
    • v.41 no.4
    • /
    • pp.712-719
    • /
    • 2023
  • This study investigated the diversity of butterfly communities inhabiting agroecosystems and examined the effect of latitude and longitude. The ecological characteristics of butterflies inhabiting rural ecosystems, such as habitat preference and food plant range, were also examined. This study was conducted from 2019 to 2022, selecting 10 locations nationwide and conducting line transect surveys every two weeks for four years, confirming a total of 112 species and 21,901 individuals. There was no difference in the number of species and individuals by region, but there was a clear difference in community composition. The most abundant species in rural ecosystems were Pieris rapae, Polygonia c-aureum, Zizeeria maha, and Colias erate, in that order. There was no significant difference in the number of species and individuals by latitude and longitude, indicating no peninsula effect. Habitat preference showed that butterflies preferring grasslands and forest edges were much more common than those preferring the forest interior, and the food breadth was mostly oligophagous, followed by monophagous and polyphagous. Butterflies inhabiting agroecosystems had ecological characteristics that preferred open spaces such as grasslands and forest edges or relatively diverse foods, due to the similarity of the environmental characteristics of the survey points. Through this study, we believe that continuous monitoring is necessary to determine whether climate change, which is currently underway and habitat change are affecting butterflies in agroecosystems.

Climate Change and Depletion of Walleye Pollock Resources in the East Sea (기후변화와 동해안에서의 명태 자원의 고갈)

  • Kim, Jong-Gyu;Kim, Joong-Soon
    • Journal of Environmental Health Sciences
    • /
    • v.44 no.3
    • /
    • pp.259-266
    • /
    • 2018
  • Objectives: Considered the "national fish" in Korea, the walleye pollock (Gadus chalcogrammus) has disappeared in the East Sea (Sea of Japan), a main habitat and fishing ground for the species. The reason for the disappearance is still a matter of controversy. This study was performed to investigate the long-term relationship between the walleye pollock catch and various meteorological and oceanographic factors in these waters. Methods: Fishery data on walleye pollock and data on meteorological and marine environmental factors over the 30 years (1981-2010) were obtained from the official national database. Time series analysis and correlation and regression analyses were performed to study the relationships. Results: Both air temperature and sea surface temperature in the East Sea rose over these 30 years, and the latter became more prominent. Salinity and dissolved oxygen showed a tendency to decrease while concentrations of nutrients such as nitrite nitrogen and nitrate nitrogen showed an increasing tendency. Sea surface temperature, air temperature, atmospheric pressure, and wind grade were negatively correlated with the catch size of walleye pollock (p<0.05), but salinity was positively correlated (p<0.001). Conclusion: The results of this study indicate that climate change, especially ocean warming, affected the habitat of walleye pollock. The results also indicate that lower sea surface and air temperatures, milder wind grade, and higher salinity were preferred for the survival of the fish species. It is necessary to pay attention to changes of the ocean ecosystem in terms of environmental pollution as well as seawater temperature.