본 연구는 PCA와 템플릿 정합을 사용한 얼굴 표정 인식 알고리즘을 제안한다. 먼저 얼굴 영상은 Haar-like feature의 특징 마스크를 사용하여 획득한다. 획득한 얼굴 영상은 눈과 눈썹을 포함하고 있는 얼굴 상위 부분과 입과 턱을 포함하고 있는 얼굴 하위 부분으로 분리하여 얼굴 요소 추출에 용이하게 나눈다. 얼굴 요소 추출은 눈 영상과 입 영상을 추출하는 과정으로 먼저 학습영상으로 PCA를 거쳐 생성된 고유얼굴을 구한다. 고유 얼굴에서 고유 입과 고유 눈을 획득하고, 이를 얼굴 분리 영상과 템플릿 매칭시켜 얼굴요소를 추출한다. 얼굴 요소는 눈과 입이 있으며 두 요소의 기하학적 특징으로 표정을 인식한다. 컴퓨터 모의실험 결과에 따르면 제안한 방법이 기존의 방법보다 추출률이 우수하게 나왔으며, 특히 입 요소의 추출률은 99%에 달하였다. 또 이 얼굴 요소 추출 방법을 표정인식에 적용하였을 때 놀람, 화남, 행복의 3가지 표정의 인식률이 80%를 상회하였다.
최근 3D 프린터의 보급과 함께 3D 모델에 대한 수요가 급증하고 있다. 그러나 3D 모델의 생성은 숙달된 전문가가 전문 소프트웨어를 이용하여 작성하여야 한다. 본 연구는 한 장의 2차원 정면 얼굴사진으로 부터 3D 모델링하는 방법에 대한 것으로 일반인들도 쉽게 3D모델을 생성할 수 있도록 한다. 사진으로부터 배경과 전경을 분리하고 분리한 전경 영역에 일정간격으로 2차원 상에 버텍스를 배치하고 배치한 버텍스 위치를 이미지의 계조 값과 눈썹과 코 등의 특성을 고려하여 버텍스를 3차원으로 확장한다. 전경과 배경을 분리하는 방법으로 에지정보를 사용하였으며 눈과 코의 위치를 찾기 위하여 Haar-like feature를 이용하는 AdaBoost 알고리즘을 사용하였다. 알고리즘으로 생성한 3D 모델은 수작업에 의한 후처리가 필요하지만 3D 프린터를 위한 콘텐츠 제공에 매우 유용하게 활용될 것이다.
본 논문은 흡연으로 인한 화재사고 방지를 위해, 비디오 영상에서 흡연자를 검출하는 알고리즘을 제안한다. 흡연자의 행동을 인식하기 위해 행동 인식 기법의 계층적 방법 중 서술 기반 접근 방법을 기반으로 제안하는 알고리즘은 배경 영역 분리, 객체 검출, 이벤트 탐지, 이벤트 판단 과정으로 구성된다. 배경 영역 분리 과정으로 학습률이 다른 두 개의 가우시안 혼합 모델을 이용하여 입력 영상으로부터 고속 움직임 전경, 저속 움직임 전경 영상을 생성하고, 저속움직임 전경 영상을 chain-rule 기반 외곽선 검출 알고리즘을 통하여 객체의 위치를 추출해낸다. 위치 정보를 기반으로 흡연자의 세 가지 특징인 얼굴, 연기, 손의 움직임을 이벤트 탐지 과정에서 검출한다. Haar-like feature를 이용하여 얼굴을 검출하며, 고속 움직임 전경에서 연기의 발생 빈도수와 방향성을 반영하여 연기를 검출한다. 움직임 추정을 통해 반복적인 손의 움직임을 검출한다. 일정 구간의 비디오 시퀀스 내 객체들에 대하여, 검출된 특징들의 서술적 관계를 반영하여 각각의 객체가 흡연자인지 판단한다. 제안하는 방법은 실시간으로 여러 다른 객체들 사이에서 강인하게 흡연자를 검출한다.
현재 지문인식, 얼굴인식 등 다양한 보안기술들이 개발되고 있다. 하지만 많은 기술들이 개발되었음에도 불구하고 기술들을 접목시킨 분야가 상당히 제한적이다. 특히 기존에 디지털 방식의 시스템에 현대 보안기술들을 접목시키기는 쉽지만, 아날로그 방식을 사용하던 시스템에서 디지털 방식의 새로운 기술을 도입하기엔 많은 어려움이 있다. 하지만 그 시스템이 널리 사용될 수 있다면 아날로그 시스템을 디지털 시스템으로 바꿀만한 충분한 가치가 있다. 그렇기 때문에 선택한 주제가 전자출결 시스템이다. 본 논문은 라즈베리파이를 활용하여 출입문에 카메라를 설치하여 얼굴 감지를 위한 Haar-like feature방식의 트레이닝과, 주성분 분석(PCA)방식 중의 Eigenface 방식의 얼굴인식으로 실시간 얼굴인식을 수행하여 출결을 수행한다. 출결 된 데이터들은 무선통신을 활용하여 스마트폰으로 전송하고 스마트폰에선 그 정보들을 받고 관리할 수 있는 관자용 어플리케이션 제작까지 완료하였다.
Face detection is essential to the full automation of face image processing application system such as face recognition, facial expression recognition, age estimation and gender identification. It is found that local image features which includes Haar-like, LBP, and MCT and the Adaboost algorithm for classifier combination are very effective for real time face detection. In this paper, we present a face detection method using local pixel direction code(PDC) feature and lookup table classifiers. The proposed PDC feature is much more effective to dectect the faces than the existing local binary structural features such as MCT and LBP. We found that our method's classification rate as well as detection rate under equal false positive rate are higher than conventional one.
The rapid growth of camera technology can provide various types of information which was not previously provided. Furthermore, IP camera which has rapid data transfer rate and high resolution particularly provide a lot of useful functions beyond the existing simple surveillance capabilities. We are developing Real-Time Face Recognition Access Control System based on the camera technology, and improvement of face detection and recognition algorithms are vitally needed to realize that system. In this paper, we proposes a method to improve the computing speed and detection rate by adding new features to the existing Viola-Jones detection algorithm.
KSII Transactions on Internet and Information Systems (TIIS)
/
제9권8호
/
pp.3136-3150
/
2015
A vision-based 3D tracking of articulated human hand is one of the major issues in the applications of human computer interactions and understanding the control of robot hand. This paper presents an improved approach for tracking and recovering the 3D position and orientation of a human hand using the Kinect sensor. The basic idea of the proposed method is to solve an optimization problem that minimizes the discrepancy in 3D shape between an actual hand observed by Kinect and a hypothesized 3D hand model. Since each of the 3D hand pose has 23 degrees of freedom, the hand articulation tracking needs computational excessive burden in minimizing the 3D shape discrepancy between an observed hand and a 3D hand model. For this, we first created a 3D hand model which represents the hand with 17 different parts. Secondly, Random Forest classifier was trained on the synthetic depth images generated by animating the developed 3D hand model, which was then used for Haar-like feature-based classification rather than performing per-pixel classification. Classification results were used for estimating the joint positions for the hand skeleton. Through the experiment, we were able to prove that the proposed method showed improvement rates in hand part recognition and a performance of 20-30 fps. The results confirmed its practical use in classifying hand area and successfully tracked and recovered the 3D hand pose in a real time fashion.
본 논문에서는 야간 CCTV 영상을 활용하여 보행자를 검출하고 추적하는 방법을 제안하고 추적 성능을 분석한다. 유사 Haar 특징을 이용하여 Adaboost 알고리즘으로 학습하고 종속분류기로 객체를 검출한다. 파티클 필터를 활용하여 검출된 보행자를 추적한다. 야간 CCTV영상에 대하여 파티클 필터의 객체 추적에 효율적인 파티클 수와 분포를 실험을 통하여 제시하였다. 골목길 등에서 취득한 야간 CCTV영상에 대하여 검출과 추적성능을 검증하였다.
본 논문은 기존의 Haar 유사 특징 기반 얼굴검출 기법의 한계를 보완하는 수평 및 수직방향픽셀 히스토그램 분석 기반의 머리영역 검출 방법을 제안한다. 제안 기법은 배경차감 영상에서 수평과 수직 방향으로 전경 픽셀의 수를 표시하는 픽셀 히스토그램 영상을 생성한 후, 해리스 코너 검출기법을 이용하여 머리 영역을 특징짓는 특징점을 검출한다. 제안한 방법은 기존의 얼굴 특성 기반 검출에 비해 머리를 포함한 몸체의 수직과 수평 픽셀 히스토그램을 이용함으로써 정면 영상뿐만 아니라 측면 및 후면 영상이나 이마가 가려진 입력 영상의 경우에도 머리 영역을 안정적으로 검출하는 결과를 보여주었다.
최근 얼굴 인식 기술과 하드웨어의 빠른 발전으로 인해 실시간 얼굴 검출이 가능한 다양한 어플리케이션이 제시되고 있다. 특히 네트워크의 발달과 영상 장비의 저 비용화로 IP 기반의 네트워크 감시 카메라와 얼굴 검출 기술을 이용한 스마트 감시 카메라의 요구와 저장된 감시카메라의 영상에서 얼굴 검출을 할 수 있는 스마트 감시 시스템의 요구가 증대되고 있다. 그러나 대부분의 감시 시스템은 네트워크 대역폭과 저장 용량을 감소시키기 위하여 영상을 압축하고 있다. 압축된 영상을 전부 디코딩 하고 모든 프레임에서 얼굴 검출을 하는 것은 시스템 성능 요구사항을 증대시키므로 압축된 영상을 이용한 빠른 얼굴 검출기법이 요구되고 있다. 본 논문은 기존의 Haar like features와 adaboost 학습기 등의 고속화된 얼굴 검출 알고리즘과 모션정보를 이용한 프레임 저감기법을 이용하여 압축된 프레임에서 고속으로 얼굴검출을 하는 방법을 제시하고 방송 응용분야에 대해 논의 하고자 한다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.