• Title/Summary/Keyword: H_\infty$ performance

Search Result 358, Processing Time 0.23 seconds

$H_\infty$Control Synthesis for Robust Control of a Turbo-Generator (터-빈 발전기의 견실성 제어를 위한$H_\infty$제어 시스템 설계)

  • Chung, Dae-Won;Kim, Kern-Joong
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.48 no.5
    • /
    • pp.622-628
    • /
    • 1999
  • This paper presented to design a robust turbo-generator control system using {{{{ { H}_{$\infty$ } }}}} control synthesis for improving small-signal stability. Application study of{{{{ { H}_{$\infty$ } }}}} control synthesis is more appropriate in this system since a turbo-generator system is usually operated under circumstance of unmeasurable modelling uncertainty and external disturbance. The{{{{ { H}_{$\infty$ } }}}} control theory was briefly reviewed for good understanding and the reasonable approach. The design results are simulated for a case study and to check the system performance in comparison with currently operating Lead/Lag filtered PSS performance.

  • PDF

Robust H$\infty$ Filtering for discrete-Time Polytopic Uncertain Systems with Multiple Time Delays

  • Kim, Jong-Hae;Park, Hong-Bae
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.34.3-34
    • /
    • 2001
  • The design method of H$\infty$ filter for discrete-time uncertain linear systems with multiple state delays is investigated. The uncertain parameters are assumed to be unknown but belonging to known convex compact set of polytope type less conservative than norm bounded parameter uncertainty. The modified H$\infty$ performance measure is introduced to consider the initial states values which affect the performance of filter. The objective is to design a stable H$\infty$ filter guaranteeing asymptotic stability of filtering error dynamics and minimizing H$\infty$ norm bound. The sufficient condition for the existence of filter and the filter design method are established by LMI (linear matrix inequality) approach.

  • PDF

Robust Depth and Course Control of AUV Using LMI-based $H_{\infty}$ Servo Control (LMI에 기초한 $H_{\infty}$ 서보제어를 이용한 AUV의 강인한 자동 심도 및 방향제어)

  • 양승윤;김인수;이만형
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.3 no.1
    • /
    • pp.38-46
    • /
    • 2000
  • In this paper, robust depth and course controllers of AUV(autonomous underwater vehicles) using LMI-based H$_{\infty}$ servo control are proposed. The $H_{\infty}$ servo problem is modified to an $H_{\infty}$ control problem for the generalized plant that includes a reference input mode, and then a sub-optimal solution that satisfies a given performance criteria is calculated by LMI(Linear Matrix Inequality) approach. The robust depth and course controllers are designed to be satisfied the robust stability about the modeling error generated from the perturbation of the hydrodynamic coefficients and the robust tracking property under sea wave and tide disturbances. The performances of the designed controllers are evaluated by computer simulations, and these simulation results show the applicability of the proposed robust depth and course controller.

  • PDF

NFL-$H_{\infty}$/SMC Design for Nonlinear PSS : Part B (비선형 PSS을 위한 NFL-$H_{\infty}$/SMC 의 설계 : Part B)

  • Lee, Sang-Seung;Park, Jong-Keun;Lee, Ju-Jang
    • Proceedings of the KIEE Conference
    • /
    • 1998.07c
    • /
    • pp.970-972
    • /
    • 1998
  • In this paper, the standard Dole, Glover, Khargoneker, and Francis (abbr. : DGKF 1989) $H_{\infty}$ controller $(H_{\infty}C)$ is extended to the nonlinear feedback linearization-$H_{\infty}$ /sliding mode controller (NFL-$H_{\infty}$/SMC) to solve the problem associated with the full state feedback for the unmeasurable state variables in the conventional SMC, to obtain the smooth control as the linearized controller for a linear system (or to cancel the nonlinearity for the nonlinear system), and to improve the time-domain performance under worst case.

  • PDF

H Control for Discrete-Time Fuzzy Markovian Jump Systems with State and Input Time Delays (상태 및 입력 시간지연을 갖는 이산 퍼지 마코비안 점프 시스템의 H 제어)

  • Lee, Kap-Rai
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.22 no.1
    • /
    • pp.28-35
    • /
    • 2012
  • This paper presents the method for $H_{\infty}$ fuzzy controller design of discrete-time fuzzy Markovian jump systems with state and input time delays. The Takagi and Sugeno fuzzy model is employed to represent a delayed nonlinear system that possesses Markovian jump parameters. A stochastic mode dependent Lyapunov function is employed to analyze the stability and $H_{\infty}$ disturbance attenuation performance of the fuzzy Markovian jump systems with state and input time delays. A sufficient condition for the existence of fuzzy $H_{\infty}$ controller is given in terms of matrix inequalities. Also numerical example is presented to illustrate the efficiency of the proposed design method.

Delay-dependent Fuzzy H Controller Design for Delayed Fuzzy Dynamic Systems (시간지연 퍼지 시스템의 지연 종속 퍼지 H제어기 설계)

  • Lee, Kap-Rai
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.14 no.5
    • /
    • pp.571-576
    • /
    • 2004
  • This paper presents a delay dependent fuzzy $H_{\infty}$ controller design method for delayed fuzzy dynamic systems. Using delay-dependent Lyapunov function, the global exponential stability and $H_{\infty}$ performance problem arc discussed. A sufficient conditions for the existence of fuzzy controller is presented in terms of linear matrix inequalities(LMIs). A simulation example is given to illustrate the design procedures and performances of the proposed methods.

Parallel Robust $H_{\infty}$ Control for Weakly Coupled Bilinear Systems with Parameter Uncertainties Using Successive Galerkin Approximation

  • Kim, Young-Joong;Lim, Myo-Taeg
    • International Journal of Control, Automation, and Systems
    • /
    • v.4 no.6
    • /
    • pp.689-696
    • /
    • 2006
  • This paper presents a new algorithm for the closed-loop $H_{\infty}$ composite control of weakly coupled bilinear systems with time-varying parameter uncertainties and exogenous disturbance using the successive Galerkin approximation(SGA). By using weak coupling theory, the robust $H_{\infty}$ control can be obtained from two reduced-order robust $H_{\infty}$ control problems in parallel. The $H_{\infty}$ control theory guarantees robust closed-loop performance but the resulting problem is difficult to solve for uncertain bilinear systems. In order to overcome the difficulties inherent in the $H_{\infty}$ control problem, two $H_{\infty}$ control laws are constructed in terms of the approximated solution to two independent Hamilton-Jacobi-Isaac equations using the SGA method. One of the purposes of this paper is to design a closed-loop parallel robust $H_{\infty}$ control law for the weakly coupled bilinear systems with parameter uncertainties using the SGA method. The other is to reduce the computational complexity when the SGA method is applied to the high order systems.

Depth and Course Controller Design of Autonomous Underwater Vehicles using H$_\infty$ Servo Control (H$_\infty$ 서보제어를 이용한 무인 수중운동체의 심도 및 방향제어기 설계)

  • 김인수;정금영;양승윤;조상훈;정찬희;이만형
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.215-215
    • /
    • 2000
  • In this paper, depth and course controllers of autonomous underwater vehicles using H$_{\infty}$ servo control are proposed. An H$_{\infty}$ servo problem is formulated to design the controllers satisfying a robust tracking property with modeling errors and disturbances. The solution of the H$_{\infty}$ servo problem is as follows: first, this problem is modified as an H$_{\infty}$ control problem for the generalized plant that includes a reference input mode, and then a sub-optimal solution that satisfies a given performance criteria is calculated by LMI(Linear Matrix Inequality) approach. The H$_{\infty}$ depth and course controllers ate designed to satisfy with the robust stability about the modeling error generated from the perturbation of the hydrodynamic coefficients and the robust tracking property under disturbances(wave force, wave moment, tide). The performances(the robustness to the uncertainties, depth and course tracking properties) of the designed controllers are evaluated with computer simulations, and finally these simulation results show the usefulness and application of the proposed H$_{\infty}$ depth and course control systems.

  • PDF

Robust $H{\infty}$ Control Using Sliding Mode and LMI (슬라이딩모드와 LMI를 이용한 강인 $H{\infty}$ 제어)

  • Kim, Su-Jin;Kim, Min-Chan;Park, Seung-Kyu;Ahn, Ho-Kyun;Kwak, Gun-Pyong;Yoon, Tae-Sung
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.11 no.2
    • /
    • pp.316-321
    • /
    • 2007
  • [ $H{\infty}$ ] controller, which shows robustness for disturbances and noises, can not be used in the case of uncertain system parameters. Even if the $H{\infty}$ controller can be designed for the parameter uncertain system, its performance can be deteriorated. Therefore, in this paper, the robustness of $H{\infty}$ controller is improved by using the SMC(Sliding Mode Control). The LMI based $H{\infty}$ controller is designed first and then SMC controller is added.

Damping of Low Frequency Oscillation in Power System using Robust Control of Superconductor Flywheel Energy Storage System (초전도 플라이휠 에너지 저장장치의 강인제어를 이용한 전력계통의 저주파진동 억제)

  • Lee, J.P.;Kim, H.G.
    • Progress in Superconductivity
    • /
    • v.14 no.1
    • /
    • pp.52-59
    • /
    • 2012
  • In this paper, the robust superconductor flywheel energy storage system(SFESS) controller using $H_{\infty}$ control theory was designed to damp low frequency oscillation of power system. The main advantage of the $H_{\infty}$ controller is that uncertainties of power system can be included at the stage of controller design. Both disturbance attenuation and robust stability for the power system were treated simultaneously by using mixed sensitivity $H_{\infty}$ problem. The robust stability and the performance for uncertainties of power system were represented by frequency weighted transfer function. To verify control performance of proposed SFESS controller using $H_{\infty}$ control, the closed loop eigenvalue and the damping ratio in dominant oscillation mode of power system were analyzed and nonlinear simulation for one-machine infinite bus system was performed under disturbance for various operating conditions. The results showed that the proposed $H_{\infty}$ SFESS controller was more robust than conventional power system stabilizer (PSS).