• Title/Summary/Keyword: HYPERION

Search Result 68, Processing Time 0.022 seconds

A COMPARISON OF OBJECTED-ORIENTED AND PIXELBASED CLASSIFICATION METHODS FOR FUEL TYPE MAP USING HYPERION IMAGERY

  • Yoon, Yeo-Sang;Kim, Yong-Seung
    • Proceedings of the KSRS Conference
    • /
    • v.1
    • /
    • pp.297-300
    • /
    • 2006
  • The knowledge of fuel load and composition is important for planning and managing the fire hazard and risk. However, fuel mapping is extremely difficult because fuel properties vary at spatial scales, change depending on the seasonal situations and are affected by the surrounding environment. Remote sensing has potential of reduction the uncertainty in mapping fuels and offers the best approach for improving our abilities. This paper compared the results of object-oriented classification to a pixel-based classification for fuel type map derived from Hyperion hyperspectral data that could be enable to provide this information and allow a differentiation of material due to their typical spectra. Our methodological approach for fuel type map is characterized by the result of the spectral mixture analysis (SMA) that can used to model the spectral variability in multi- or hyperspectral images and to relate the results to the physical abundance of surface constitutes represented by the spectral endmembers. Object-oriented approach was based on segment based endmember selection, while pixel-based method used standard SMA. To validate and compare, we used true-color high resolution orthoimagery

  • PDF

Performance Design of a Dual Mode Ramjet Engine (초음속에서 극초음속까지 비행을 위한 이중모드 램제트엔진의 성능 설계)

  • Choe, Se-Young;Yeom, Hyo-Won;Kim, Sun-Kyoung;Sung, Hong-Gye;Byun, Jong-Ryul;Yoon, Hyun-Gull
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2007.11a
    • /
    • pp.289-292
    • /
    • 2007
  • Performance of a dual mode ramjet engine based on the sensitivity analysis of design parameters (the gap between cowl and inlet spike and combustor length) was analyzed from the view points of aerodynamics and thermodynamics. A dual mode engine performing from supersonic to hypersonic (Mach no. 2 to 6) was designed in a proposed flight envelop. The design method and result were comparable to the results of the previous study, Hyperion RLV, and the CFD calculation.

  • PDF

Sub-Pixel Analysis of Hyperspectral Image Using Linear Spectral Mixing Model and Convex Geometry Concept

  • Kim, Dae-Sung;Kim, Yong-Il;Lim, Young-Jae
    • Korean Journal of Geomatics
    • /
    • v.4 no.1
    • /
    • pp.1-8
    • /
    • 2004
  • In the middle-resolution remote sensing, the Ground Sampled Distance (GSD) that the detector senses and samples is generally larger than the actual size of the objects (or materials) of interest, and so several objects are embedded in a single pixel. In this case, as it is impossible to detect these objects by the conventional spatial-based image processing techniques, it has to be carried out at sub-pixel level through spectral properties. In this paper, we explain the sub-pixel analysis algorithm, also known as the Linear Spectral Mixing (LSM) model, which has been experimented using the Hyperion data. To find Endmembers used as the prior knowledge for LSM model, we applied the concept of the convex geometry on the two-dimensional scatter plot. The Atmospheric Correction and Minimum Noise Fraction techniques are presented for the pre-processing of Hyperion data. As LSM model is the simplest approach in sub-pixel analysis, the results of our experiment is not good. But we intend to say that the sub-pixel analysis shows much more information in comparison with the image classification.

  • PDF

Automatic Thresholding Method using Cumulative Similarity Measurement for Unsupervised Change Detection of Multispectral and Hyperspectral Images (누적 유사도 측정을 이용한 자동 임계값 결정 기법 - 다중분광 및 초분광영상의 무감독 변화탐지를 목적으로)

  • Kim, Dae-Sung;Kim, Hyung-Tae
    • Korean Journal of Remote Sensing
    • /
    • v.24 no.4
    • /
    • pp.341-349
    • /
    • 2008
  • This study proposes new automatic thresholding method, which is important step for detecting binary change/non-change information using satellite images. Result value through pixel-based similarity measurement is calculated cumulatively with regular interval, and thresholding is pointed at the steep slope position. The proposed method is assessed in comparison with expectation-maximization algorithm and coner method using synthetic images, ALI images, and Hyperion images. Throughout the results, we validated that our method can guarantee the similar accuracy with previous algorithms. It is simpler than EM algorithm, and can be applied to the binormal histogram unlike the coner method.

Spectal Characteristics of Dry-Vegetation Cover Types Observed by Hyperspectral Data

  • Lee Kyu-Sung;Kim Sun-Hwa;Ma Jeong-Rim;Kook Min-Jung;Shin Jung-Il;Eo Yang-Dam;Lee Yong-Woong
    • Korean Journal of Remote Sensing
    • /
    • v.22 no.3
    • /
    • pp.175-182
    • /
    • 2006
  • Because of the phenological variation of vegetation growth in temperate region, it is often difficult to accurately assess the surface conditions of agricultural croplands, grasslands, and disturbed forests by multi-spectral remote sensor data. In particular, the spectral similarity between soil and dry vegetation has been a primary problem to correctly appraise the surface conditions during the non-growing seasons in temperature region. This study analyzes the spectral characteristics of the mixture of dry vegetation and soil. The reflectance spectra were obtained from laboratory spectroradiometer measurement (GER-2600) and from EO-1 Hyperion image data. The reflectance spectra of several samples having different level of dry vegetation fractions show similar pattern from both lab measurement and hyperspectral image. Red-edge near 700nm and shortwave IR near 2,200nm are more sensitive to the fraction of dry vegetation. The use of hyperspectral data would allow us for better separation between bare soils and other surfaces covered by dry vegetation during the leaf-off season.

Spectral Mixture Analysis Using Hyperspectral Image for Hydrological Land Cover Classification in Urban Area (도시지역의 수문학적 토지피복 분류를 위한 초분광영상의 분광혼합분석)

  • Shin, Jung-Il;Kim, Sun-Hwa;Yoon, Jung-Suk;Kim, Tae-Geun;Lee, Kyu-Sung
    • Korean Journal of Remote Sensing
    • /
    • v.22 no.6
    • /
    • pp.565-574
    • /
    • 2006
  • Satellite images have been used to obtain land cover information that is one of important factors for hydrological analysis over a large area. In urban area, more detailed land cover data are often required for hydrological analysis because of the relatively complex land cover types. The number of land cover classes that can be classified with traditional multispectral data is usually less than the ones required by most hydrological uses. In this study, we present the capabilities of hyperspectral data (Hyperion) for the classification of hydrological land cover types in urban area. To obtain 17 classes of urban land cover defined by the USDA SCS, spectral mixture analysis was applied using eight endmembers representing both impervious and pervious surfaces. Fractional values from the spectral mixture analysis were then reclassified into 17 cover types according to the ratio of impervious and pervious materials. The classification accuracy was then assessed by aerial photo interpretation over 10 sample plots.

Support Vector Machine Classification of Hyperspectral Image using Spectral Similarity Kernel (분광 유사도 커널을 이용한 하이퍼스펙트럴 영상의 Support Vector Machine(SVM) 분류)

  • Choi, Jae-Wan;Byun, Young-Gi;Kim, Yong-Il;Yu, Ki-Yun
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.14 no.4 s.38
    • /
    • pp.71-77
    • /
    • 2006
  • Support Vector Machine (SVM) which has roots in a statistical learning theory is a training algorithm based on structural risk minimization. Generally, SVM algorithm uses the kernel for determining a linearly non-separable boundary and classifying the data. But, classical kernels can not apply to effectively the hyperspectral image classification because it measures similarity using vector's dot-product or euclidian distance. So, This paper proposes the spectral similarity kernel to solve this problem. The spectral similariy kernel that calculate both vector's euclidian and angle distance is a local kernel, it can effectively consider a reflectance property of hyperspectral image. For validating our algorithm, SVM which used polynomial kernel, RBF kernel and proposed kernel was applied to land cover classification in Hyperion image. It appears that SVM classifier using spectral similarity kernel has the most outstanding result in qualitative and spatial estimation.

  • PDF

Analysis of Satellite Images to Estimate Forest Biomass (산림 바이오매스를 산정하기 위한 위성영상의 분석)

  • Lee, Hyun Jik;Ru, Ji Ho;Yu, Young Geol
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.21 no.3
    • /
    • pp.63-71
    • /
    • 2013
  • This study calculated vegetation indexes such as SR, NDVI, SAVI, and LAI to figure out correlations regarding vegetation by using high resolution KOMPSAT-2 images and LANDSAT images based on the forest biomass distribution map that utilized field survey data, satellite images and LiDAR data and then analyzed correlations between their values and forest biomass. The analysis results reveal that the vegetation indexes of high resolution KOMPSAT-2 images had higher correlations than those of LANDSAT images and that NDVI recorded high correlations among the vegetation indexes. In addition, the study analyzed the characteristics of hyperspectral images by using the COMIS of STSAT-3 and Hyperion images of a similar sensor, EO-1, and further the usability of biomass estimation in hyperspectral images by comparing vegetation index, which had relatively high correlations with biomass, with the vegetation indexes of LANDSAT with the same GSD conditions.

Hyperspectral Image Fusion Algorithm Based on Two-Stage Spectral Unmixing Method (2단계 분광혼합기법 기반의 하이퍼스펙트럴 영상융합 알고리즘)

  • Choi, Jae-Wan;Kim, Dae-Sung;Lee, Byoung-Kil;Yu, Ki-Yun;Kim, Yong-Il
    • Korean Journal of Remote Sensing
    • /
    • v.22 no.4
    • /
    • pp.295-304
    • /
    • 2006
  • Image fusion is defined as making new image by merging two or more images using special algorithms. In case of remote sensing, it means fusing multispectral low-resolution remotely sensed image with panchromatic high-resolution image. Generally, hyperspectral image fusion is accomplished by utilizing fusion technique of multispectral imagery or spectral unmixing model. But, the former may distort spectral information and the latter needs endmember data or additional data, and has a problem with not preserving spatial information well. This study proposes a new algorithm based on two stage spectral unmixing model for preserving hyperspectral image's spectral information. The proposed fusion technique is implemented and tested using Hyperion and ALI images. it is shown to work well on maintaining more spatial/spectral information than the PCA/GS fusion algorithms.

The radiation shielding proficiency and hyperspectral-based spatial distribution of lateritic terrain mapping in Irikkur block, Kannur, Kerala

  • S. Arivazhagan;K.A. Naseer;K.A. Mahmoud;N.K. Libeesh;K.V. Arun Kumar;K.ChV. Naga Kumar;M.I. Sayyed;Mohammed S. Alqahtani;E. El Shiekh;Mayeen Uddin Khandaker
    • Nuclear Engineering and Technology
    • /
    • v.55 no.9
    • /
    • pp.3268-3276
    • /
    • 2023
  • The practice of identifying the potential zones for mineral exploration in a speedy and low-cost method includes the use of satellite imagery analysis as a part of remote sensing techniques. It is challenging to explore the iron mineralization of a region through conventional methods which are a time-consuming process. The current study utilizes the Hyperion satellite imagery for mapping the iron mineralization and associated geological features in the Irikkur region, Kannur, Kerala. Along with the remote sensing results, the field study and laboratory-based analysis were conducted to retrieve the ground truth point and geochemical proportion to verify the iron ore mineralization. The MC simulation showed for shielding properties indicate an increase in the linear attenuation coefficient with raising the Fe2O3+SiO2 concentrations in the investigated rocks where it is varied at 0.662 MeV in the range 0.190 cm-1 - 0.222 cm-1 with rising the Fe2O3+SiO2 content from 57.86 wt% to 71.15 wt%. The analysis also revealed that when the γ-ray energy increased from 0.221 MeV to 2.506 MeV, sample 1 had the largest linear attenuation coefficient, ranging from 9.33 cm1 to 0.12 cm-1. Charnockite rocks were found to have exceptional shielding qualities, making them an excellent natural choice for radiation shielding applications.