• Title/Summary/Keyword: HVDC converter

Search Result 181, Processing Time 0.027 seconds

A New Synthetic Test Circuit for Testing Thyristor Valve in HVDC Converter (HVDC 컨버터의 Thyristor Valve 시험을 위한 새로운 합성시험회로)

  • Kim, Kyeong-Tae;Han, Byung-Moon;Jung, Jae-Hun;Nho, Eui-Cheol;Chung, Yong-Ho;Baek, Seung-Taek
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.17 no.3
    • /
    • pp.191-197
    • /
    • 2012
  • This paper proposes a new synthetic test circuit (STC) to confirm the switching operation of thyristor valve in HVDC converter. The proposed STC uses a 6-pulse thyristor converter with 2-phase chopper as a high-current source to provide turn-on current to the test valve. The operation of proposed STC was verified through theoretical analysis and computer simulations. Based on computer simulations, a hardware scaled model was built and tested to confirm the feasibility of implementing a real-size test facility. The proposed system has an advantage of simple structure and operation over the existing system.

A cooperative control study of Jeju ±80kV 60MW HVDC for voltage stability enhancement (제주 ±80kV 60MW HVDC 협조 제어 방안 연구)

  • Yoon, Jong-Su;Seo, Bo-Hyeok
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.61 no.9
    • /
    • pp.1221-1225
    • /
    • 2012
  • This paper describes CSC(Current Sourced Converters)-based HVDC operational strategy for voltage stability enhancement in the power system. In case of CSC-based HVDC system, rectifier and inverter consume reactive power up to about 60% of converter rating. Therefore, CSC-based HVDC is basically not useful system for voltage stability even if AC filters and shunt capacitors are attached. But, If the particular power system condition is fulfilled, CSC-based HVDC also can be the rapid reactive power source for voltage stability enhancement using a cooperative control with converter and AC filters/Shunt Capacitors. In this paper, the cooperative control algorithm is presented and simulated to ${\pm}80kV$ 60MW HVDC system in Jeju island.

MMC(Modular Multi-level Converter) type 25MVA HVDC System Test (MMC(Modular Multi-level Converter) type 25MVA HVDC 시스템 시험)

  • Jeong, Jong-kyou;Jung, Hong-ju;Yoo, Hyun-ho;Lee, Doo-young
    • Proceedings of the KIPE Conference
    • /
    • 2018.07a
    • /
    • pp.438-439
    • /
    • 2018
  • 본 논문은 (주)효성 중공업연구소에서 국책과제를 통해 자체 개발한 MMC(Modular Multi-level Converter) type ${\pm}12kV$ 25MVA HVDC 시스템의 시험결과에 대해 소개한다. 제주에 구축된 HVDC 실증단지는 국내 유일의 MMC type 전압형 HVDC 시스템이며 11-레벨의 AC 출력 전압을 형성하는 2개의 컨버터가 Back-to-Back 형태로 구성되어 있다. 각 컨버터의 AC 출력단은 각각 계통과 풍력발전단지에 연계되어 풍력발전단지에서 생산된 전력을 계통으로 전송하는 역할을 한다. 본 논문에서는 국책과제의 정량적 목표항목을 달성하기 위한 시험을 수행한 결과에 대해서 소개한다.

  • PDF

Busbar Design of High Power HVDC Converter (대용량 HVDC 컨버터의 Busbar 설계)

  • Kim, Chan-Ki;Park, Yong-Hun;Kim, Jin-Young
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.61 no.7
    • /
    • pp.923-927
    • /
    • 2012
  • This paper studies a busbar design of high power HVDC converter. In order to design a electrical busbar, we need to consider electrical, mechanical and environmental condition. In this papre, we focus on the electrical design in terms of temperaure and currnet. Busbar conductor can be damaged to burn due to the temperature and fault current of busbar. In this paper, Busbar design of Jindo-Jeju HVDC #2 System that will start operate in 2012 is considered.

Operational test Analysis for HVDC Converter based-on Modular Multilevel Converter (MMC 기반의 전압형 HVDC 밸브단위의 운전시험 결과분석)

  • Seo, Dong-Woo;Jeong, Jong-Kyou;Jung, Hong-Ju
    • Proceedings of the KIPE Conference
    • /
    • 2020.08a
    • /
    • pp.395-396
    • /
    • 2020
  • HVDC(High Voltage Direct Current) 시스템은 무효전력의 독립적인 제어가 가능하여 계통의 안정적인 연계가 가능하다. 또한, 멀티 터미널 DC grid 구성이 가능해 다수의 계통을 통합 연계할 수 있는 장점이 있다. HVDC 시스템은 단위 유닛인 서브모듈로 구성된 MMC(Modular Multi-level Converter) 구조를 갖으며 밸브 단위로 시스템이 구성된다. VSC(Voltage Source Converter) 밸브는 IEC 62501 기반의 규격을 바탕으로 하드웨어 설계의 건전성과 성능을 확인할 수 있다. 본 논문에서는 (주)효성이 개발중인 200MW 모듈형 멀티레벨 컨버터 밸브 단위의 성능과 설계의 건전성을 확인하기 위해 밸브단위 운전시험 회로를 구성하였으며, 운전 시험 결과를 분석하였다.

  • PDF

Interfacing of A.C. System with HVDC Schemes : A Comparison of Filter Types (HVDC 구성을 갖는 A.C. System의 필터 유형 비교에 관한 연구)

  • Kim, Chan-Ki;Choy, Young-Do
    • Proceedings of the KIPE Conference
    • /
    • 2005.07a
    • /
    • pp.373-375
    • /
    • 2005
  • AC harmonic filters connected to the terminals of HVDC schemes fulfill two primary functions: to compensate for part or all of the reactive power absorbed by the converter, and to limit to an acceptable level the voltage distortion caused by the converter harmonics. this paper makes a direct comparison between tuned filters and damped filters, each designed for a long HVDC transmission scheme. It Is hoped that by comparing the two approaches a syudy to determine the suitability of filter types to AC systems can be promoted.

  • PDF

A Fault Location Algorithm Using Wavelet Transformation for HVDC Cables (웨이블렛 변환을 이용한 HVDC 케이블 고장점 표정 알고리즘)

  • Kwon, Young-Jin;Kang, Sang-Hee
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.57 no.8
    • /
    • pp.1311-1317
    • /
    • 2008
  • In this paper, a fault location algorithm using wavelet transform is proposed for HVDC cable lines. The arriving instants of the first and second fault-induced backward travelling waves can be detected by using wavelet transform. The fault distance is estimated by using the time difference between the two instants of backward travelling waves and the velocity of the travelling wave. To distinguish between the backward wave from fault point and the backward wave from the remote end, polarities of backward waves are used. The proposed algorithm is verified varying with fault distances and fault resistances in underground cables of VSC(voltage source converter) HVDC system and CSC(Current Source Converter) HVDC respectively. Performance evaluations of the proposed algorithm shows that it has good ability for a fault location of HVDC cable faults.

Application of MMC-HVDC System for Regulating Grid Voltage Based on Jeju Island Power System (제주계통의 전압조정을 위한 MMC-HVDC 시스템 응용)

  • Quach, Ngoc-Thinh;Kim, Eel-Hwan;Lee, Do-Heon;Kim, Ho-Chan
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.19 no.6
    • /
    • pp.494-502
    • /
    • 2014
  • This paper presents a control method of the modular multilevel converter - high-voltage direct current (MMC-HVDC) system to regulate grid voltage on the basis of the Jeju Island power system. In this case, the MMC-HVDC system is controlled as a static synchronous compensator (Statcom) to exchange the reactive power with the power grid. The operation of the MMC-HVDC system is verified by using the PSCAD/EMTDC simulation program. The Jeju Island power system is first established on the basis of the parameters and measured data from the real Jeju Island power system. This power system consists of two line-commutated converter - high-voltage direct current (LCC-HVDC) systems, two Statcom systems, wind farms, thermal power plants, transformers, and transmission and distribution lines. The proposed control method is then applied by replacing one LCC-HVDC system with a MMC-HVDC system. Simulation results with and without using the MMC-HVDC system are compared to evaluate the effectiveness of the control method.

Commissioning Test of the MMC(Modular Multi-level Converter) type 25MVA HVDC Pilot Project (MMC(Modular Multi-level Converter) type 25MVA HVDC 실증단지 Commissioning Test)

  • Jeong, Jong-kyou;Jung, Hong-ju;Yoo, Hyun-ho;Park, Yong-hee;Lee, Doo-young
    • Proceedings of the KIPE Conference
    • /
    • 2017.07a
    • /
    • pp.282-283
    • /
    • 2017
  • 본 논문은 (주)효성 중공업연구소에서 국책과제를 통해 자체 개발한 MMC(Modular Multi-level Converter) type ${\pm}12kV$ 25MVA HVDC 시스템에 대하여 실증단지 구축 및 commissioning test에 대한 소개를 한다. 제주에 구축된 HVDC 실증단지는 국내 유일의 MMC type 전압형 HVDC 시스템이며 11-레벨의 AC 출력 전압을 형성하는 2개의 컨버터가 Back-to-Back 형태로 구성되어 있다. 각 컨버터의 AC 출력단은 각각 계통과 풍력발전단지에 연계되어 풍력발전단지에서 생산된 전력을 계통으로 전송하는 역할을 한다. 주요 AC/DC Yard 기기들로는 AC 고조파 필터, 밸브리액터, DC 리액터, 변압기, CGIS등이 있다. HVDC 의 commissioning test를 위해 IEEE, IEC, Cigre TB 등의 문서들을 종합 분석하여 당사의 시스템에 알맞은 시험절차서와 검증항목을 준비하였다. 본 논문에서는 당사에서 준비한 시험절차서 및 검증항목에 대하여 소개하고자 한다.

  • PDF

Characteristic analysis of LCC and VSC HVDC system in Jeju power system using RTDS (RTDS를 이용한 제주도 전력계통에서의 전압형과 전류형 직류송전 시스템 특성분석)

  • Ju, Chang-Hyeon;Kim, Jin-Geun;Dinh, Minh-Chau;Park, Min-Won;Yu, In-Keun
    • Proceedings of the KIEE Conference
    • /
    • 2011.07a
    • /
    • pp.828-829
    • /
    • 2011
  • This paper performs a comparison analysis of two types of HVDC system in Jeju power system. A traditional HVDC transmission system had been composed of line commutated converter based on thyristors and the development of semiconductors enables to apply voltage source converter using IGBTs. The detailed parameters of Jeju power system were considered to make a similar condition with real system in real time digital simulator. Two types of HVDC transmission system were modeled and simulated to compare their characteristics in Jeju power system. The simulation results demonstrate that the VSC-HVDC system has more stable performance due to the fast response speed than LCC-HVDC when the transmission capacity was fluctuated.

  • PDF