• Title/Summary/Keyword: HVDC converter

Search Result 181, Processing Time 0.025 seconds

Detection of DC-Cable Fault Location for HVDC Transmission Systems Integrated with Wind Farm

  • Nguyen, Thanh Hai;Lee, Dong-Choon
    • Proceedings of the KIPE Conference
    • /
    • 2014.07a
    • /
    • pp.71-72
    • /
    • 2014
  • This paper presents a method to find the fault location on the DC cables for the HVDC transmission systems which utilizes a hybrid topology of the diode rectifier and the voltage-source converter (VSC) in the wind farm (WF) side. First, the DC-cable fault occurring in this HVDC system is analyzed in detail. Then, the DC-cable fault location is detected from the two relative voltages located on the same section of the cable, which are estimated from a pair of DC-cable voltage and current measurements. The effectiveness of the method is verified by the simulation results.

  • PDF

Circulating Current Control of MMC-HVDC System based on Vector PI Controllers under Unbalanced Grid Voltage Conditions (불평형 전압 조건에서 Vector PI 제어기를 적용한 MMC-HVDC 시스템의 순환전류 제어)

  • Lee, June-Sun;Kim, Si-Hwan;Kim, Rae-Young
    • Proceedings of the KIPE Conference
    • /
    • 2016.11a
    • /
    • pp.7-8
    • /
    • 2016
  • 본 논문에서는 모듈형 멀티레벨 컨버터 (Modular Multilevel Converter ; MMC) 고압 직류 송전 (High Voltage Direct Current ; HVDC) 시스템의 순환전류 성분을 제어하기 위해 VPI (Vector Proportional Integral) 제어기를 적용한 순환전류 제어 기법을 제안하였다. 제안한 방식은 기존의 준공진 (Quasi-Resonant) 제어기를 적용한 방식과 비교하여 계통 주파수 변동에 강인하고 넓은 공진 대역폭 선정이 용이한 장점을 갖는다. 제안한 순환전류 제어기의 성능은 기존의 준공진 제어기를 적용한 기법과 계통 전압 단상지락 및 계통 주파수 변동 상황에서 시뮬레이션을 통하여 비교 검증하였다.

  • PDF

Analysis of Internal Dynamics in Modular Multilevel Converter for Reducing Power Oscillation Under Grid Voltage Distortion (AC 계통 불평형 조건에서 출력동요 저감을 위한 MMC 내부 동적특성 분석)

  • Lee, Sang-Jung;Kang, Jaesik;Kang, Dae-Wook;Park, Young-Joo;Jung, Jee-Hoon
    • Proceedings of the KIPE Conference
    • /
    • 2020.08a
    • /
    • pp.320-321
    • /
    • 2020
  • 본 논문은 AC 계통 불평형 발생 시 출력전력의 동요를 저감시키기 위한 POD 전략을 수행하는 MMC-HVDC 시스템의 내부 동적상태를 분석하였다. POD 전략을 통해서 MMC 출력전류의 역상분을 제어하여 계통에 주입되는 유효 전력의 발진을 제거함으로써, MMC-HVDC 시스템이 연계된 인근 계통에 공급 신뢰도를 향상시킬 수 있다. POD 전략에서 유효 전력만 출력할 경우, MMC의 각 상에는 동일한 전력이 흐른다. 반면, 계통 전압 보상을 위해서 무효 전력을 동시에 공급할 경우, 각 상에 흐르는 전력은 불균형해지기 때문에 MMC의 암전류 불평형이 발생하여 스위치 소자의 정격 용량 및 열 스트레스를 증가 시켜 MMC의 안정성을 저해시킨다. 본 논문은 POD 전략을 수행하기 위해서 무효 전력이 MMC 암 전류에 미치는 영향을 분석하였으며, 200 MW MMC-HVDC 모델을 바탕으로 PSCAD/EMTDC 시뮬레이션 툴을 이용하여 분석 결과를 검증하였다.

  • PDF

New Topology for Valve Performance Test Equipment of MMC based STATCOM (MMC 기반 STATCOM 용 밸브의 성능시험 장치를 위한 새로운 토폴로지)

  • Bae, Jongwoo;Jung, Jae-Hun;Nho, Eui-Cheol;Chung, Yong-Ho;Baek, Seung-Taek;Lee, Jin-Hee;Kim, Young-Woo
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.22 no.1
    • /
    • pp.82-88
    • /
    • 2017
  • This study proposes a new topology for the performance test of a valve consisting of a modular multilevel converter (MMC)-based static synchronous compensator (STATCOM). The conventional valve performance test equipment requires high-voltage AC source of several kV rating because the number of submodules to be tested in a valve should be at least six or eight. However, the power source of the proposed scheme is DC and not AC source. The DC power source voltage range of the proposed test circuit is from several volts to several tens of volts. Therefore, the size and cost for the performance test equipment can be reduced considerably compared with the conventional method. The proposed scheme satisfies the requirements of the IEC 62927 standard. Simulations are conducted for a valve of 50[MVA] MMC-based STATCOM. Experimental results with a scale-downed setup show the validity of the proposed performance test topology.

Study on the effect of DC voltage in oil-immersed transformer insulation system (DC 전압이 유입변압기 절연시스템에 미치는 영향에 관한 연구)

  • Jang, Hyo-Jae;Kim, Yong-Han;Seok, Bok-Yeol
    • Proceedings of the KIEE Conference
    • /
    • 2011.07a
    • /
    • pp.1552-1553
    • /
    • 2011
  • The HVDC transformer which is one of the main equipments for HVDC(High Voltage Direct Current) electric power transmission systems is exposed to not only AC voltage but also the inflowing DC voltage which comes from the DC-AC converter systems. Therefore, the HVDC transformer insulation system is required to withstand the electric field stress under AC, DC and DC polarity reversal conditions. However the electric field distributions under those conditions are different because the AC electric field and DC electric field are governed by permittivity and conductivity, respectively. In this study, the changes of electric potential and electric field of conventional AC transformer insulation system under DC polarity reversal test condition were analyzed by FEM(Finite Element Method). The DC electric field stress was concentrated in the solid insulators while the AC electric field stress was concentrated in the mineral oil. In addition, the electric stress under that condition which is affected by the surface charge accumulation at the interfaces between insulators was evaluated. The stress in some parts could be higher than that of AC and DC condition, during polarity reversal test. The result of this study would be helpful for the HVDC transformer insulation system design.

  • PDF

Output Control of Wind Farm Side Converter from DC Link for DC Voltage Stabilization with HVDC (해상풍력 연계용 HVDC의 DC전압 안정화를 위한 DC Link의 발전기측 컨버터 제어 전략)

  • Lee, Hyeong-Jin;Kang, Byoung-Wook;Huh, Jae-Sun;Kim, Jae-Chul
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.65 no.9
    • /
    • pp.1479-1485
    • /
    • 2016
  • This paper presents DC voltage recovery time improvement method in DC link of High Voltage Direct Current (HVDC) with offshore wind farm. The wind farm should be satisfied Low Voltage Ride Through(LVRT) control strategy when grid faults occur. The LVRT control strategy indicates actions which have to be executed according to the voltage dip ratio and the fault duration. However, The LVRT control strategy makes between wind farm and power system through DC Link voltage when grid fault occurs. The de-loading scheme is one of the method to control the DC voltage. But de-loading scheme need to long DC voltage recovery time. Thus, this paper proposes an improved de-loading scheme and we analysis DC voltage and active power reference through a simulation.

Resonance Investigation and Active Damping Method for VSC-HVDC Transmission Systems under Unbalanced Faults

  • Tang, Xin;Zhan, Ruoshui;Xi, Yanhui;Xu, Xianyong
    • Journal of Power Electronics
    • /
    • v.19 no.6
    • /
    • pp.1467-1476
    • /
    • 2019
  • Grid unbalanced faults can cause core saturation of power transformer and produce lower-order harmonics. These issues increase the electrical stress of power electronic devices and can cause a tripping of an entire HVDC system. In this paper, based on the positive-sequence and negative-sequence impedance model of a VSC-HVDC system as seen from the point of common connection (PCC), the resonance problem is analyzed and the factors determining the resonant frequency are obtained. Furthermore, to suppress over-voltage and over-current during resonance, a novel method using a virtual harmonic resistor is proposed. The virtual harmonic resistor emulates the role of a resistor connected in series with the commutating inductor without influencing the active and reactive power control. Simulation results in PSCAD/EMTDC show that the proposed control strategy can suppress resonant over-voltage and over-current. In addition, it can be seen that the proposed strategy improves the safety of the VSC-HVDC system under unbalanced faults.

A Study on Bipolar DC-DC Converter for Low Voltage Direct Current Distribution (저압 직류 배전용 양극성 DC-DC 컨버터에 관한 연구)

  • Lee, Jung-Yong;Kim, Ho-Sung;Cho, Jin-Tae;Kim, Ju-Yong;Cho, Younghoon
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.24 no.4
    • /
    • pp.229-236
    • /
    • 2019
  • This study proposes a DC-DC converter topology of solid-state transformer for low-voltage DC distribution. The proposed topology consists of a voltage balancer and bipolar DC-DC converter. The voltage and current equations are obtained on the basis of switching states to design the controller. The open-loop gain of the controller is achieved using the derived voltage and current equations. The controller gain is selected through the frequency analysis of the loop gain. The inductance and capacitance are calculated considering the voltage and current ripples. The prototype is fabricated in accordance with the designed system parameters. The proposed topology and designed controller are verified through simulation and experiment.

A 48V-400V Non-isolated Bidirectional Soft-switching DC-DC Converter for Residential ESS (PPS 제어기법을 적용한 48V-400V 비절연 양방향 DC-DC컨버터)

  • Jeong, Hyeon-Ju;Kwon, Min-Ho;Choi, Se-Wan
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.23 no.3
    • /
    • pp.190-198
    • /
    • 2018
  • This paper proposes a nonisolated, bidirectional, soft-switching DC - DC converter with PWM plus phase shift (PPS) control. The proposed converter has an input-parallel/output-series configuration and can achieve the interleaving effect and high voltage gains, resulting in decreased voltage ratings in all related devices. The proposed converter can operate under zero-voltage switching (ZVS) conditions for all switches in continuous conduction mode. The power flow of the proposed converter can be controlled by changing the phase shift angle, and the duty is controlled to balance the voltage of four high voltage side capacitors. The PPS control device of the proposed converter is simple in structure and presents symmetrical switching patterns under a bidirectional power flow. The PPS control also ensures ZVS during charging and discharging at all loads and equalizes the voltage ratings of the output capacitors and switches. To verify the validity of the proposed converter, an experimental investigation of a 2 kW prototype is performed in both charging and discharging modes under different load conditions and a bidirectional power flow.

A Fast Sorting Strategy Based on a Two-way Merge Sort for Balancing the Capacitor Voltages in Modular Multilevel Converters

  • Zhao, Fangzhou;Xiao, Guochun;Liu, Min;Yang, Daoshu
    • Journal of Power Electronics
    • /
    • v.17 no.2
    • /
    • pp.346-357
    • /
    • 2017
  • The Modular Multilevel Converter (MMC) is particularly attractive for medium and high power applications such as High-Voltage Direct Current (HVDC) systems. In order to reach a high voltage, the number of cascaded submodules (SMs) is generally very large. Thus, in the applications with hundreds or even thousands of SMs such as MMC-HVDCs, the sorting algorithm of the conventional voltage balancing strategy is extremely slow. This complicates the controller design and increases the hardware cost tremendously. This paper presents a Two-Way Merge Sort (TWMS) strategy based on the prediction of the capacitor voltages under ideal conditions. It also proposes an innovative Insertion Sort Correction for the TWMS (ISC-TWMS) to solve issues in practical engineering under non-ideal conditions. The proposed sorting methods are combined with the features of the MMC-HVDC control strategy, which significantly accelerates the sorting process and reduces the implementation efforts. In comparison with the commonly used quicksort algorithm, it saves at least two-thirds of the sorting execution time in one arm with 100 SMs, and saves more with a higher number of SMs. A 501-level MMC-HVDC simulation model in PSCAD/EMTDC has been built to verify the validity of the proposed strategies. The fast speed and high efficiency of the algorithms are demonstrated by experiments with a DSP controller (TMS320F28335).