• Title/Summary/Keyword: HVDC(high voltage DC) system

Search Result 56, Processing Time 0.026 seconds

DC Voltage Build-Up Suppression Scheme of HVDC System for Offshore Wind Farm Connection using Chopper Resistor and de-loading (초퍼저항 및 de-loading 협조제어를 통한 해상풍력 연계용 HVDC시스템 DC전압 상승 억제 방안)

  • Lee, Hyeong-Jin;Kang, Byoung-Wook;Kim, Jae-Chul
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.66 no.5
    • /
    • pp.750-756
    • /
    • 2017
  • This paper presents a method for DC voltage control of HVDC system connection of offshore wind farms. In the event of fault in AC grid, HVDC system need to meet LVRT regulations. When HVDC system meet LVRT regulation, unbalance is caused between power input and power output for DC link. Therefore, LVRT regulation lead to DC voltage increase of HVDC system. To control the DC voltage increase, the chopper resistor can be suggested. In this paper, DC voltage suppression is proposed using chopper resistor and de-loading. The effectiveness of the chopper resistor was verified using PSCAD/EMTDC.

DC-link Voltage Control of HVDC for Offshore Wind Farm using Improved De-loading Method (개선된 De-loading기법을 이용한 해상풍력 연계용 HVDC의 DC 전압의 제어방안)

  • Huh, Jae-Sun;Moon, Won-Sik;Park, Sang-In;Kim, Doo-Hee;Kim, Jae-Chul
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.64 no.3
    • /
    • pp.399-404
    • /
    • 2015
  • This paper presents the DC voltage control method in DC link of High Voltage Direct Current(HVDC) for an offshore wind farm in Low Voltage Ride Through(LVRT) situation. Wind generators in an offshore wind farm are connected to onshore network via HVDC transmission. Due to LVRT control of grid side inverter in HVDC, power imbalancing in DC link is generated and this consequentially causes rising of DC voltage. A de-loading scheme is one of the method to protect the wind power system DC link capacitors from over voltage. But the flaw of this method is slow control response time and that it needs long recovery time to pre-fault condition after fault clear. Thus, this paper proposes improved de-loading method and we analyze control performance for DC voltage in LVRT control of HVDC for an offshore wind farm.

Operational characteristics analysis of a 8 mH class HTS DC reactor for an LCC type HVDC system

  • Kim, S.K.;Go, B.S.;Dinh, M.C.;Kim, J.H.;Park, M.;Yu, I.K.
    • Progress in Superconductivity and Cryogenics
    • /
    • v.17 no.1
    • /
    • pp.32-35
    • /
    • 2015
  • Many kinds of high temperature superconducting (HTS) devices are being developed due to its several advantages. In particular, the advantages of HTS devices are maximized under the DC condition. A line commutated converter (LCC) type high voltage direct current (HVDC) transmission system requires large capacity of DC reactors to protect the converters from faults. However, conventional DC reactor made of copper causes a lot of electrical losses. Thus, it is being attempted to apply the HTS DC reactor to an HVDC transmission system. The authors have developed a 8 mH class HTS DC reactor and a model-sized LCC type HVDC system. The HTS DC reactor was operated to analyze its operational characteristics in connection with the HVDC system. The voltage at both ends of the HTS DC reactor was measured to investigate the stability of the reactor. The voltages and currents at the AC and DC side of the system were measured to confirm the influence of the HTS DC reactor on the system. Two 5 mH copper DC reactors were connected to the HVDC system and investigated to compare the operational characteristics. In this paper, the operational characteristics of the HVDC system with the HTS DC reactor according to firing angle are described. The voltage and current characteristics of the system according to the types of DC reactors and harmonic characteristics are analyzed. Through the results, the applicability of an HTS DC reactor in an HVDC system is confirmed.

Performance Improvement using Auxiliary Converter on HVDC System (보조 컨버터를 이용한 HVDC 시스템의 특성개선)

  • Kim, Dong-Hee;Lee, Hwa-Chun;Park, Sung-Jun;Nam, Hae-Kon;Choi, Joon-Ho;Kim, Kwang-Heon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.2
    • /
    • pp.217-224
    • /
    • 2009
  • This paper presents a new AC/DC converter scheme for HVDC system to achieve a high power factor operation. The new AC/DC converter consists of two 12-pulse bridge converters in series: the primary and auxiliary converters. Ignition angles of the main and auxiliary converters are controlled independently to maintain the nominal DC voltage and control auxiliary voltage. The resulted DC voltage obtained by superimposing the above two phase modulated voltages can be controlled very rapidly over a wide range, and a high power factor operation is achieved. Performance improvements in power factor and harmonic distortion are validated by theoretic derivations and experiments with prototype HVDC system. With the proposed converters, investment for reactive power compensation and filter in HVDC system can be saved significantly.

Output Control of Wind Farm Side Converter from DC Link for DC Voltage Stabilization with HVDC (해상풍력 연계용 HVDC의 DC전압 안정화를 위한 DC Link의 발전기측 컨버터 제어 전략)

  • Lee, Hyeong-Jin;Kang, Byoung-Wook;Huh, Jae-Sun;Kim, Jae-Chul
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.65 no.9
    • /
    • pp.1479-1485
    • /
    • 2016
  • This paper presents DC voltage recovery time improvement method in DC link of High Voltage Direct Current (HVDC) with offshore wind farm. The wind farm should be satisfied Low Voltage Ride Through(LVRT) control strategy when grid faults occur. The LVRT control strategy indicates actions which have to be executed according to the voltage dip ratio and the fault duration. However, The LVRT control strategy makes between wind farm and power system through DC Link voltage when grid fault occurs. The de-loading scheme is one of the method to control the DC voltage. But de-loading scheme need to long DC voltage recovery time. Thus, this paper proposes an improved de-loading scheme and we analysis DC voltage and active power reference through a simulation.

Investigation of a Hybrid HVDC System with DC Fault Ride-Through and Commutation Failure Mitigation Capability

  • Guo, Chunyi;Zhao, Chengyong;Peng, Maolan;Liu, Wei
    • Journal of Power Electronics
    • /
    • v.15 no.5
    • /
    • pp.1367-1379
    • /
    • 2015
  • A hybrid HVDC system that is composed of line commutated converter (LCC) at the rectifier side and voltage source converter (VSC) in series with LCC at the inverter side is studied in this paper. The start-up strategy, DC fault ride-through capability, and fault recovery strategy for the hybrid HVDC system are proposed. The steady state and dynamic performances under start-up, AC fault, and DC fault scenarios are analyzed based on a bipolar hybrid HVDC system. Furthermore, the immunity of the LCC inverter in hybrid HVDC to commutation failure is investigated. The simulation results in PSCAD/EMTDC show that the hybrid HVDC system exhibits favorable steady state and dynamic performances, in particular, low susceptibility to commutation failure, excellent DC fault ride-through, and fast fault recovery capability. Results also indicate that the hybrid HVDC system can be a good alternative for large-capacity power transmission over a long distance byoverhead line.

Study on the effect of DC voltage in oil-immersed transformer insulation system (DC 전압이 유입변압기 절연시스템에 미치는 영향에 관한 연구)

  • Jang, Hyo-Jae;Kim, Yong-Han;Seok, Bok-Yeol
    • Proceedings of the KIEE Conference
    • /
    • 2011.07a
    • /
    • pp.1552-1553
    • /
    • 2011
  • The HVDC transformer which is one of the main equipments for HVDC(High Voltage Direct Current) electric power transmission systems is exposed to not only AC voltage but also the inflowing DC voltage which comes from the DC-AC converter systems. Therefore, the HVDC transformer insulation system is required to withstand the electric field stress under AC, DC and DC polarity reversal conditions. However the electric field distributions under those conditions are different because the AC electric field and DC electric field are governed by permittivity and conductivity, respectively. In this study, the changes of electric potential and electric field of conventional AC transformer insulation system under DC polarity reversal test condition were analyzed by FEM(Finite Element Method). The DC electric field stress was concentrated in the solid insulators while the AC electric field stress was concentrated in the mineral oil. In addition, the electric stress under that condition which is affected by the surface charge accumulation at the interfaces between insulators was evaluated. The stress in some parts could be higher than that of AC and DC condition, during polarity reversal test. The result of this study would be helpful for the HVDC transformer insulation system design.

  • PDF

Design of a laboratory-scale superconducting DC transmission line (모델급 초전도 직류 송전 선로의 설계)

  • Kim, Sung-Kyu;Dinh, Minh-Chau;Park, Minwon;Yu, In-Keun
    • Proceedings of the KIEE Conference
    • /
    • 2015.07a
    • /
    • pp.1102-1103
    • /
    • 2015
  • The researchers worldwide have been trying to apply high temperature superconducting wire for power system devices. High voltage direct current (HVDC) transmission system has been used for bulk and long-distance power transmission. The authors designed a laboratory-scale superconducting DC transmission line to investigate its applicability to an HVDC system. The superconducting DC transmission line was simulated in connection to a laboratory-scale HVDC system using PSCAD/EMTDC. The operating characteristics of the superconducting DC transmission line connected to HVDC system and the effects of the superconducting DC transmission line on HVDC system were analyzed and compared with the results of a conventional DC transmission line. The results of operating characteristics for the superconducting DC transmission line were discussed in detail.

  • PDF

Novel Topology and Control Strategy of HVDC Grid Connection for Open Winding PMSG based Wind Power Generation System

  • Zeng, Hengli;Nian, Heng
    • Journal of international Conference on Electrical Machines and Systems
    • /
    • v.3 no.2
    • /
    • pp.215-221
    • /
    • 2014
  • To satisfy the high voltage direct current (HVDC) grid connection demand for wind power generation system, a novel topology and control strategy of HVDC grid connection for open-winding permanent magnet synchronous generator (PMSG) based wind power generation system is proposed, in which two generator-side converter and two isolated DC/DC converters are used to transmit the wind energy captured by open winding PMSG to HVDC grid. By deducing the mathematic model of open winding PMSG, the vector control technique, position sensorless operation, and space vector modulation strategy is applied to implement the stable generation operation of PMSG. Finally, the simulation model based on MATLAB is built to validate the availability of the proposed control strategy.

Study on DC Swich Control in HVDC C&P System (HVDC C&P 시스템 내 DC Switch 제어에 관한 연구)

  • Son, Bong Kyun
    • Proceedings of the KIPE Conference
    • /
    • 2013.11a
    • /
    • pp.133-134
    • /
    • 2013
  • 현재 LS산전과 한국전력공사의 공동 개발을 통하여 60MW급 ${\pm}80kV$ 전류형 HVDC(High Voltage Direct Current) Transmission System 내 알고리즘 국산화 개발을 진행하고 있다. 제어 알고리즘 여러 레벨(AC Yard Control, Master Control, Pole Control, Phase Control)에서 운전하기 전 여러 고려사항 중 DC Yard 내 DC Switch의 투입/개방의 조건이 있다. 본 논문에서는 이러한 DC Line에 DC Switch의 상태를 효율적으로 제어하는 방법에 대해 소개하고자 한다.

  • PDF