• Title/Summary/Keyword: HVAC시스템

Search Result 264, Processing Time 0.02 seconds

Development of Integrated HVAC Noise Analysis Program for Ships (선박용 통합 HVAC 소음해석 프로그램 개발)

  • Han, Ju-Bum;Hong, Suk-Yoon;Song, Jee-Hun;Kim, Nho-Seong;Chun, Seung-Hyun
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2011.04a
    • /
    • pp.588-593
    • /
    • 2011
  • The Main design parameters of ship HVAC systems are pressure drop and noise analysis of ducts. The Noise prediction for HVAC(Heating, Ventilating and Air Conditioning) systems are normally performed by empirical method suggested by NEBB(National Environmental Balancing Bureau, 1994), but NEBB's method is not suitable for the ship HVAC systems. In this paper, numerical analysis methods are used to develop a noise prediction method for the ship HVAC systems, especially for large ducts. To develop regression formula of attenuation of sound pressure level in large duct, Boundary Element Method(BEM) is used. Using dynamic loss coefficient which is suggested by ASHRAE fitting data base and numerical methods of HVAC noise analysis, integrated HVAC noise analysis of Program is developed. The developed program can present pressure drop and noise analysis of the ship HVAC systems. To verify the accuracy and convenience of the developed program, prediction of HVAC system for Semi-Submersible Drilling RIG is carried out and the results are compared with measurement of noise level during sea trial.

  • PDF

The Study on Optimization of HVAC Systems Design in Tall Buildings (초고층 건축물의 최적화된 설비시스템 설계를 위한 기초연구)

  • Yu, Jung-Yeon;Cho, Dong-Woo;Yu, Ki-Hyung
    • KIEAE Journal
    • /
    • v.5 no.1
    • /
    • pp.11-18
    • /
    • 2005
  • The optimized HVAC system design in tall buildings enable owners to save unnecessary energy consumption and residents to have comfort environments. The purpose of this study is to develop design process for optimized HVAC system design in tall buildings. As basic researches, literature researches and case studies of HVAC system design in tall buildings were performed. Survey was processed among expert in the field and key considerations on HVAC system design were drew as conclusions. With these conclusions, studies were performed on effects of wind velocity, outdoor air temperature, and solar radiation that are main factors of load calculation in tall buildings. Finally, air-tightness and stack effect were analyzed and estimated by literature studies, field measurements and computer simulations.

Prediction of HVAC System Noise by Acoustic Power Balancing Method (음향파워 평형방법을 이용한 HVAC 시스템 소음예측)

  • 홍진무;최태묵;김병희;조대승;김동해
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.11b
    • /
    • pp.1306-1312
    • /
    • 2001
  • In this study. the acoustic power balancing method to analysis HVAC system noise is presented. The method can consider not only forward but also backward propagations of noise generated by the operation of air supply units and aerodynamical disturbance at duct elements. This can be done by estimating sound transmission and reflection properties of duct elements. and balancing acoustic powers of total HVAC system. To verify the accuracy of the presented method. numerical analysis for a HVAC system is carried out and the results are compared with those obtained by a traditional empirical method. suggested by National Environmental Balancing Bureau.

  • PDF

Development of Cabin Noise Prediction Program Induced by HVAC System (공조시스템 유기 격실 소음 예측 프로그램 개발)

  • Kim, Byung-Hee;Kwon, Jong-Hyun;Cho, Dae-Seung
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.11a
    • /
    • pp.554-558
    • /
    • 2004
  • In this paper, we introduce noise prediction program of HVAC system to assist low-noisy design of ship's cabin. The developed program calculates sound power levels at HVAC components considering primary and secondary noise generated by fan and duct element, duct element noise attenuation, and duct break-in noise based on the authentic empirical method suggested by NEBB and acoustic power balancing method. Sound pressure level at cabin with or without ceiling system is evaluated by the diffuse-field theory considering diffuser and duct break-out sound powers. Moreover, the program provides intuitive pre- and post-processors using modem GUI functions to help efficient modeling and evaluation of cabin and HVAC component noise. To validate the accuracy and convenience of the program, noise prediction for a HVAC system is demonstrated.

  • PDF

ZigBee Location-based Human Adaptive HVAC System for Intelligent Building System (지능형 빌딩을 위한 ZigBee 위치기반 인간 적응형 HVAC 시스템)

  • Park, Eun-Ju;Lee, Suk;Lee, Kyung-Chang;Kim, Hyun-Hee
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.18 no.8
    • /
    • pp.750-757
    • /
    • 2012
  • This paper focuses on human adaptive HVAC system that can regulate the thermal comfort of the resident in intelligent buildings. The thermal comfort is represented in this paper by PMV (Predicted Mean Vote) as defined by ISO 7730. This PMV value indicates how hot or cold a resident feels by considering temperature, humidity, resident's metabolic rate, relative air velocity, and clothing insulation. In order to develop such a system, a location detection system based on ZigBee module was used along with temperature sensors, other environment sensors. The human adaptive HVAC system was evaluated experimentally on a test bed emulating a room.

Linear Digital Decentralized Control System for Smart Space (스마트 스페이스 구축을 위한 선형 디지털 분산 제어 시스템 개발)

  • Kim Do Wan;Joo Young Hoon;Park Jin Bae
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.15 no.1
    • /
    • pp.36-41
    • /
    • 2005
  • The smart space is composed of the wire and/or wireless network, multi-sensor-based environment, and many various controllers. For the smart space, this paper presents a new design method of multirate digital decentralized controller using the digital redesign technique. In specific, the proposed method is based on the delta-operator and the multirate sampling and takes the form of the LMIs. To shows the feasibility of the suggested method, the computer simulations for HVAC system are provided.

A Study on the Introduction of Fuzzy system into the Decision-Making process of HVAC designers

  • Woo, Se-Jin
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.4 no.1
    • /
    • pp.12-17
    • /
    • 2004
  • This study is designed to grope for logical methods in the decision-making process of human beings such as creation and analysis. With this in mind, the paper worked with a process where the designers of a design team gather and analyze their opinions in a design process to decide on the HVAC system of buildings. The paper introduced the fuzzy theory, or one of the methods to quantitatively describe language values with ambiguous features, suggesting a method to determine the judgement and suggestion values of the HVAC designers with the characteristics of language variables as the values of design factors greatly influencing the HVAC system. As a result, the paper tested the possibility of the fuzzy system as a logical method to gather the judgement of HVAC designers in a stage of HVAC type selection exerting a great influence on the experience and judgement of the designers and having powerful linguistic features and to determine an appropriate HVAC type which can satisfy the suggested values of related design factors.

Dynamic Analysis of HVAC Case for Passenger Car (승용차용 HVAC Case의 동특성 해석)

  • Yook, Ji-Yong;Cha, Yong-Kil;Lim, Jung-Su;Kim, Kwang-Il;Kang, Sung-Ho
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.19 no.1
    • /
    • pp.101-108
    • /
    • 2009
  • This paper presents dynamic analysis of HVAC(heating ventilation & air conditioning) heater case which consists of heater and evaporator unit for passenger car. To analyze the dynamic characteristics of HVAC heater case, finite element model which consists of shell elements is constructed for modal analysis and experimental modal analysis has been conducted. Finite element analysis results are compared with experimental results to evaluate of validity of finite element model. After identifying mode shape and natural frequency of HVAC heater case, local stiffness of HVAC case is evaluated through point mobility using finite element analysis and experiment.

Development of an HVAC&R Systems Energy Evaluation Methodology and Simulation Program for Office Buildings (사무소 건물의 HVAC&R 시스템 에너지 분석방법 및 예측 프로그램 개발)

  • Cho, Jinkyun;Shin, Seungho;Kim, Jonghurn;Hwang, Dongkon;Hong, Hiki
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.25 no.7
    • /
    • pp.363-370
    • /
    • 2013
  • HVAC&R systems are the most energy consuming building services, representing approximately half of the final energy use in the building sector. Despite their significant energy use, there is a lack of a consistent and homogeneous framework to efficiently guide research. This research is about the energy consumptions of HVAC&R systems, with the aim of establishing a common idea for the analysis of building energy efficiency. Our approach deals with the concept of an HVAC&R set that is composed of subsystems. A matrix combination evaluation is examined, and a total of 960 sets can be implemented in a large scale office building. A method as a tool for energy evaluations of HVAC&R systems, and HEET as a energy simulation program, were developed.