• Title/Summary/Keyword: HTST milk

Search Result 26, Processing Time 0.024 seconds

Effect of Heat-Treat Methods on the Soluble Calcium Levels in the Commercial Milk Products

  • Yoo, Sung-Ho;Kang, Seung-Bum;Park, Jin-Ho;Lee, Kyung-Sang;Kim, Jin-Man;Yoon, Sung-Sik
    • Food Science of Animal Resources
    • /
    • v.33 no.3
    • /
    • pp.369-376
    • /
    • 2013
  • Milk is well known to be rich in some nutrients such as protein, calcium, phosphorus, and vitamins. In particular, absorption and bioavailability of calcium receive lots of attention because calcium is very little absorbed until it is changed to the ionized form in the intestine. In this study, concentration of the soluble calcium was determined in the commercial bovine milk products, which were processed by different heat-treatment methods for pasteurization. As for general constituents, lactose, fat, protein, and mineral were almost same in the liquid milk products by different processors. Ultrafiltration of the skimmed milk caused little change in the permeate as for lactose content but both fat and protein decreased. pH values ranges from 6.57-6.62 at room temperature and slightly increase after centrifugation, 10,000 g, 10 min. Rennet-coagulation activity was the lowest in the ultra high temperature (UHT-)milk compared to the low temperature long time (LTLT-) and high temperature short time (HTST-)milk products. Each bovine milk products contains 1056.5-1111.3 mg/kg of Ca. The content of sulfhydryl group was the lowest in raw milk compared to the commercial products tested. For the skimmed milks after ultrafiltration with a membrane (Mw cut-off, 3 Kd), soluble Ca in the raw milk was highest at 450.2 mg/kg, followed by LTLT-milk 336.4-345.1 mg/kg, HTST-milk 305.5-313.3 mg/kg, UHT-milk 370.3-380.2 mg/kg in the decreasing order. After secondary ultrafiltration with a membrane (Mw cut-off, 1 kD), total calcium in raw milk had a highest of 444.2 mg/kg, and those in the market milk products. As follow: UHT-milk, 371.3 to 378.2 mg/kg; LTLT-milk, 333.3 to 342.2 mg/kg; HTST-milk 301.9 to 311.2 mg/kg in a decreasing order.

Changes of Indicative Substances According to Heat Treatment of Milk (우유의 가열처리에 따른 지표물질의 변화)

  • 김경미;홍윤호;이용규
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.21 no.4
    • /
    • pp.390-397
    • /
    • 1992
  • This study was carried out to analyze the physicochemical properties of bovine milks, which were heated with LTLT, HTST, UHT pasteurization and UHT sterilization methods and to compare the heat intensity among the heating methods and samples. The mean HMF values per liter milk were measured as 0.66~1.62 $\mu$M (LTLT), 0.9~1.78$\mu$M (HTST), 3.53$\mu$M(UHT pasteurized) and 7.43~8.97$\mu$M (UHT sterilized) in samples, re- sportively. The available Iysine contents per 100ml milk showed 293.2 mg (Raw), 289.2~291.2 mg (LTLT), 298.4~292.4mg (HTST), 272.4~261.6mg (UHT pasteurized) and 279.0mg (UHT sterilized), respectively. The rates of whey protein denaturation were 9.5~11.4% (LTLT), 9.5~17.1% (HTST), 89.3~95% (UHT pas-tsterilized) and 62.7% (UHT sterilized), respectively. The contents of SH groups per g protein were determined as 2.86$\mu$M (Raw) and 2.95~3.15$\mu$M (LTLT), 3.08~3.18$\mu$M (HTST), 3.26~3.42$\mu$M (UHT Pasteurized) and 3. 36$\mu$M (UHT sterilized), respectively, The SS groups Contents per g protein were 28.93$\mu$M (Raw), 25.72~26. 51 $\mu$M (LTLT), 26.93~26.79$\mu$M (HTST), 23.65~23.04 $\mu$M (UHT pasteurized) and 24.69$\mu$M (UHT sterilized), respectively. The ascorbic acid contents per liter milk were measured 6.05mg (Raw), 1.47~1.65mg (LTLT), 2.50~3.85mg (HTST), 2.87~3.69mg (UHT pasteurized) and 4.50mg (UHT sterilized). The changes of some in-dices in milk samples depend on the heating temperature and time ; the HMF values, SH groups, whey protein denaturation rates increased, while the available lysine contents and SS groups decreased in LTLT, HTST, UHT pasteurized and UHT sterilized milks. No remarkable differences were found in heating indicators between LTLT and UHT milks.

  • PDF

Comparison of Total RNA Isolation Methods for Analysis of Immune-Related microRNAs in Market Milks

  • Oh, Sangnam;Park, Mi Ri;Son, Seok Jun;Kim, Younghoon
    • Food Science of Animal Resources
    • /
    • v.35 no.4
    • /
    • pp.459-465
    • /
    • 2015
  • Bovine milk provides essential nutrients, including immunologically important molecules, as the primary source of nutrition to newborns. Recent studies showed that RNAs from bovine milk contain immune-related microRNAs (miRNA) that regulate various immune systems. To evaluate the biological and immunological activity of miRNAs from milk products, isolation methods need to be established. Six methods for extracting total RNAs from bovine colostrums were adopted to evaluate the isolating efficiency and expression of miRNAs. Total RNA from milk was presented in formulation of small RNAs, rather than ribosomal RNAs. Column-combined phenol isolating methods showed high recovery of total RNAs, especially the commercial columns for biofluid samples, which demonstrated outstanding efficiency for recovering miRNAs. We also evaluated the quantity of five immune-related miRNAs (miR-93, miR-106a, miR-155, miR-181a, miR-451) in milk processed by temperature treatments including low temperature for long time (LTLT, 63℃ for 30 min)-, high temperature for short time (HTST, 75℃ for 15 s)-, and ultra heat treatment (UHT, 120-130℃ for 0.5-4 s). All targeted miRNAs had significantly reduced levels in processed milks compared to colostrum and raw mature milk. Interestingly, the amount of immune-related miRNAs from HTST milk was more resistant than those of LTLT and UHT milks. Our present study examined defined methods of RNA isolation and quantification of immune-specific miRNAs from small volumes of milk for use in further analysis.

Changes of Lactulose Content during Heat Treatment of Milk (우유의 열처리 및 저장 조건에 따른 Lactulose의 함량 변화)

  • 김철현;백승천;정운현
    • Food Science of Animal Resources
    • /
    • v.22 no.1
    • /
    • pp.50-54
    • /
    • 2002
  • The aim of this work to determine the formation of lactulose during heat treatment process as a contribution to the estabilishment of limits of chemical indicators for different types of heat processed milk and analyze of lactulose for the reconstituted milk added samples. The HTST(75$\^{C}$/15s) and UHT(130$\^{C}$/2∼3s) treatment realized with a pilot plant and heat-treated samples were stroed at 4, 10, 30$\^{C}$ for 4 weeks. Changes in lactulose was evaluated at 7 days intervals. The other heat treatment was sealed in glass tube and heated at 75$\^{C}$ for 10 to 120s and heated at 130$\^{C}$ for 2 to 60s in a thermostatically controlled constant temperature bath of glycerol. The reconstituted milk was made with full fat dry milk that reconstituted with deionized water to 10% total solid, and was added to milk at 10, 20, 30% respectively. The samples processed with a HTST pilot plant showed that lactulose was contained at 1.47∼1.52mg/10()ml and 8.19 ∼8.32mg/100ml for UHT-treated samples. Changes in the lactulose content of heat-treated samples during storage at 4 and 10$\^{C}$ for 4 weeks caused a slight increase, however a noticeable increase was observed at 30$\^{C}$ for 4 week. The glass tube samples showed that high correlations between relative increase in content of lactulose and increasing processing times(75$\^{C}$ : r = 0.986, 130$\^{C}$ : r = 0.987, respectively). Added with reconstituted milk would cause a increase of the lactulose content linear with increasing addition amount(r = 0.982). This results observed for lactulose in commercial milk samples would applied to the detection of chemical changes during heat treatment and illegal use of reconstituted milk.

Effects of Heat Treatment on the Nutritional Quality of Milk III. Effect of Heat Treatment on Killing Pathogens in Milk (우유의 열처리가 우유품질과 영양가에 미치는 영향: III. 우유 열처리에 의한 병원균 사멸효과)

  • Moon, Yong-II;Jung, Ji Yun;Oh, Sejong
    • Journal of Dairy Science and Biotechnology
    • /
    • v.35 no.2
    • /
    • pp.121-133
    • /
    • 2017
  • A small amount of milk is sold as 'untreated' or raw in the US; the two most commonly used heat-treatments for milk sold in retail markets are pasteurization (LTLT, low-temperature long time; HTST, high-temperature short time) and sterilization (UHT, ultra-high temperature). These treatments extend the shelf life of milk. The main purpose of heat treatment is to reduce pathogenic and perishable microbial populations, inactivate enzymes, and minimize chemical reactions and physical changes. Milk UHT processing combined with aseptic packaging has been introduced to produce shelf-stable products with less chemical damage than sterile milk in containers. Two basic principles of UHT treatment distinguish this method from in-container sterilization. First, for the same germicidal effect, HTST treatments (as in UHT) use less chemicals than cold-long treatment (as in in-container sterilization). This is because Q10, the relative change in the reaction rate with a temperature change of $10^{\circ}C$, is lower than the chemical change during bacterial killing. Based on Q10 values of 3 and 10, the chemical change at $145^{\circ}C$ for the same germicidal effect is only 2.7% at $115^{\circ}C$. The second principle is that the need to inactivate thermophilic bacterial spores (Bacillus cereus and Clostridium perfringens, etc.) determines the minimum time and temperature, while determining the maximum time and temperature at which undesirable chemical changes such as undesirable flavors, color changes, and vitamin breakdown should be minimized.

Determination of Lactulose and Furosine Formation in Heated Milk as a Milk Quality Indicator

  • Cho, Young-Hee;Hong, Sung-Moon;Kim, Cheol-Hyun
    • Food Science of Animal Resources
    • /
    • v.32 no.5
    • /
    • pp.540-544
    • /
    • 2012
  • During heat treatment and storage of milk, deteriorative reaction takes place, which consequently influence on the milk quality. In this study, formation of lactulose and furosine under different thermal conditions and storage conditions, and the ratio of lactulose and furosine (LU/FU) in presence of reconstituted milk powder were determined to establish chemical indicators for heat damages of milk and the adulteration of fresh milk in dairy field. The lactulose and furosine contents linearly increased with increased heating temperature and heating time. It showed high correlation between the formation of lactulose and furosine, and the treatment temperature and time (p<0.05). The lactulose and furosine concentration of HTST milk and UHT milk noticeably increased during storage at $30^{\circ}C$, but there was no noticeable increase of lactulose and furosine concentration at lower storage temperature. In the raw milk, the lactulose and furosine contents greatly increased with the addition of reconstituted milk. The increase level of furosine was much higher than that of lactulose, which consequently resulted in the lower LU/FU ratio in milk as increase of added reconstituted milk amounts. As comparing with raw milk, there was more than twice reduction in LU/FU ratios after the addition of reconstituted milk (p<0.05). It can be concluded that lactulose and furosine are suitable milk quality indicators of heat damage and for demonstrating improper addition of reconstituted milk powder.

Effects of Heat Treatment on the Nutritional Quality of Milk: II. Destruction of Microorganisms in Milk by Heat Treatment (우유의 열처리가 우유품질과 영양가에 미치는 영향: II. 열처리에 의한 우유의 미생물 사멸효과)

  • Kim, Kwang-Hyun;Park, Dae Eun;Oh, Sejong
    • Journal of Dairy Science and Biotechnology
    • /
    • v.35 no.1
    • /
    • pp.55-72
    • /
    • 2017
  • The second article of 'Effects of heat treatment on the nutritional quality of milk,' titled 'Destruction of microorganisms in milk by heat treatment' and authored by Dr. Seong Kwan Cha, who worked at the Korea Food Research Institute, covers the heat-stable microorganisms that exist in milk after pasteurization. The article focusses on the microbiological quality of raw milk and market milk following heat treatment, and is divided into four sub-topics: microbiological quality of raw milk, survey and measurement of microorganisms killed in raw milk, effect on psychrophilic and mesophilic microorganisms, and effect of heat treatment methods on thermoduric microorganisms. Bacillus spp. and Clostridium spp. are sporeforming gram-positive organisms commonly found in soil, vegetables, grains, and raw and pasteurized milk that can survive most food processing methods. Since spores cannot be inactivated by LTLT (low temperature long time) or HTST (high temperature short time) milk pasteurization methods, they are often responsible for food poisoning. However, UHT (ultra high temperature) processing completely kills the spores in raw milk by heating it to temperatures above $130^{\circ}C$ for a few seconds, and thus, the UHT method is popularly used for milk processing worldwide.

Effects of Heat Treatment on the Nutritional Quality of Milk: V. The Effect of Heat Treatment on Milk Enzymes (우유의 열처리가 우유품질과 영양가에 미치는 영향: V. 열처리가 우유효소에 미치는 영향)

  • Shin, Hanseob;Oh, Sejong
    • Journal of Dairy Science and Biotechnology
    • /
    • v.36 no.1
    • /
    • pp.49-71
    • /
    • 2018
  • Heat treatment is the most popular processing technique in the dairy industry. Its main purpose is to destroy the pathogenic and spoilage bacteria in order to ensure that the milk is safe throughout its shelf life. The protease and lipase that are present in raw milk might reduce the quality of milk. Plasmin and protease, which are produced by psychrotrophic bacteria, are recognized as the main causes of the deterioration in milk flavor and taste during storage. The enzymes in raw milk can be inactivated by heat treatment. However, the temperature of inactivation varies according to the type of enzyme. For example, some Pseudomonas spp. produce heat-resistant proteolytic and lipolytic enzymes that may not be fully inactivated by the low temperature and long time (LTLT) treatment. These types of enzymes are inhibited only by the high temperature and short time (HTST) or ultra-high temperature (UHT) treatment of milk.

Assessment of Post-Pasteurization Contamination of Fluid Milk Products (액상유의 살균후 오염에 관한 연구)

  • Huh, Chung-Jae
    • Microbiology and Biotechnology Letters
    • /
    • v.16 no.6
    • /
    • pp.517-521
    • /
    • 1988
  • This study focused on the psychrotrophic post-pasteurization contamination of fluid milk pro-ducts which were processed by HTST system. Pasteurized line samples and container samples of each fluid milk product (whole milk and skim milk) were taken in a large fluid milk plant. tine samples were collected through nine and five different sampling locations for whole milk and skim milk products, respectively. Each sample was subjected to preliminary incubation (PI) at 21$^{\circ}C$ for 16h followed by standard plate count (SPC) and crystal violet tetrazolium agar count (CVT). Flavor, SPC, and psychrotrophic bacteria count (PBC) were determined after 7 d at 7.2$^{\circ}C$. In addition, ten sequential container samples (packaged in 1000ml paperboard containers) were taken from a filler at the beginning of each product run. These samples were used for PI followed by SPC and CVT. In addition, flavor evaluations, SPC and PBC tests were conducted after 7,10, and 14 d at 7.2$^{\circ}C$. The mean PI-CVT values for the line samples showed differences depending on the location. There was major contamination between pasteurized storage tank and the filler. The PI-CVT counts for each container sample were negatively correlated with flayer scores at 10 and 140. There were good correlations among PI-CVT values of line samples and the percentage of total container samples with acceptable flavor after 10d.

  • PDF

Analysis of the Different Heated Milks using Electronic Nose (열처리를 달리한 시유의 전자코 분석)

  • Hong, Eun-Jeung;Noh, Bong-Soo;Park, Seung-Yong
    • Food Science of Animal Resources
    • /
    • v.30 no.5
    • /
    • pp.851-859
    • /
    • 2010
  • This study was conducted to investigate the application of a model system using an MS-electronic nose based on the discriminative function analysis on volatile flavors, to prediction of the shelf-life of market milk by preservation temperature and differently-loaded heat treatment. On mass spectrum, the ion fragments of volatile flavors of milk obtained from MS-electronic nose could be distinguished at amu 60, 91, 92, and 93. The response levels of volatile flavors at each amu increased in proportion to the heat treatment loaded to the milk, in the order of LTLT, HTST, and UHT. This study indicated that the discriminative function scores of the volatile flavors seemed to correlate with the preservation temperature, storage period, and heat treatment conditions; DF1 (discriminative function first score) showed a strong relationship to storage periods, with $r^2$ of 0.9965, 0.9965, and 0.9911 at temperatures of 4, 7, and $10^{\circ}C$, respectively, while DF2 was influenced by heat treatment conditions with an $r^2$ of 0.9861 at $4^{\circ}C$. It is suggested that the discriminative function analysis given by an MS-electronic nose could be used to construct a new quality control model system for the evaluation of heat treatment loaded during the processing of milk, and for predicting storage periods of market milk.