• 제목/요약/키워드: HTSC element

검색결과 37건 처리시간 0.024초

이중퀜치를 이용한 삼상변압기형 초전도한류기의 삼상지락 고장 종류에 따른 고장전류 제한 특성 분석 (Analysis on Fault Current Limiting Characteristics of Three-Phase Transformer Type SFCL using Double Quench According to Three-Phase Ground-Fault Types)

  • 이신원;한태희;임성훈
    • 한국전기전자재료학회논문지
    • /
    • 제36권6호
    • /
    • pp.614-619
    • /
    • 2023
  • The fault current limiting characteristics of three-phase transformer type superconducting fault current limiter (SFCL), which consisted of three-phase primary and secondary windings wound on E-I iron core, one high-TC superconducting (HTSC) element connected with the secondary winding of one phase and another HTSC element connected in parallel with other two secondary windings of two phases, were analyzed. Unlike other three-phase transformer type SFCLs with three HTSC elements, three-phase transformer type SFCL using double quench has the merit to perform fault current limiting operation for three-phase ground faults with two HTSC elements. To verify its proper three-phase ground fault current limiting operation, three-phase ground faults such as single-line ground, double-line ground and triple-line ground faults were generated in three-phase simulated power system installed with three-phase transformer type SFCL using double quench. From analysis of its fault current limiting characteristics based on tested results, three-phase transformer type SFCL using double quench was shown to be effectively operated for all three-phase ground faults.

고온초전도 자기부상 마그네트 (High-Tc Superconducting Levitation Magnet)

  • 배덕권;조흥제;김봉섭;조정민;성호경;김동성
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2006년도 제37회 하계학술대회 논문집 B
    • /
    • pp.681-682
    • /
    • 2006
  • This paper deals with the preliminary study on the HTSC levitation magnet for MAGLEV operating in persistent current mode (PCM). The high temperature superconducting (HTSC) levitation magnet consists of two single-pancake type coils wound with Bi-2223 wire and a persistent current switch (PCS). The levitation magnet was designed by using 3-D finite element analysis. The suspension system for high-speed electrodynamic suspension (EDS) maglev should operated in persistent current mode. It is important to develop a technology to minimize the joint resistance of splice between two HTSC wires. The PCS was observed with respect to various magnitude of charging current. Based on these results, the levitation system using HTSC wire will be further studied.

  • PDF

자속구속형과 저항형 초전도 전류제한기의 특성비교 (Comparison of Operating Characteristics between Flux-lock Type and Resistive Type Superconducting Fault Current Limiters)

  • 박형민;임성훈;박충렬;최효상;한병성
    • 한국전기전자재료학회논문지
    • /
    • 제18권4호
    • /
    • pp.363-369
    • /
    • 2005
  • we compared the operating characteristics between flux-lock type and resistive type superconducting fault current limiters(SFCLs). Flux-lock type SFCL consists of two coils, which are wound in parallel each other through an iron core, and a high-Tc superconducting(HTSC) element is connected with coil 2 in series. The the flux-lock type SFCL can be divided into the subtractive polarity winding and the additive polarity winding operations according to the winding directions between the coil 1 and coil 2. It was confirmed from experiments that flux-lock type SFCL could improve both the quench characteristics and the transport capacity compared to the resistive type SFCL, which means, the independent operation of HTSC element.

Fault Current Waveform Analysis of a Flux-Lock Type SFCL According to LC Resonance Condition of Third Winding

  • Lim, Sung-Hun
    • Journal of Electrical Engineering and Technology
    • /
    • 제3권2호
    • /
    • pp.213-217
    • /
    • 2008
  • The flux-lock type superconducting fault current limiter(SFCL) can apply the magnetic field into the high-$T_C$ superconducting(HTSC) element by adopting the magnetic field coil in its third winding. To apply the magnetic field into the HTSC element effectively, the capacitor for LC resonance is connected in series with the magnetic field coil. However, the current waveform of third winding for the application of the magnetic field is affected by the LC resonance condition for the frequency of the source voltage and can affect the waveform of the limited fault current. In this paper, the current waveform of the third winding in the flux-lock type SFCL according to LC resonance condition during a fault period was analyzed. From the differential equation for its electrical circuit, the current equation of the third winding was derived and described with the natural frequency and the damping ratio as design parameters. Through the analysis according to the design parameters of the third winding, the waveform of the limited fault current was confirmed to be influenced by the current waveform of the third winding and the design condition for the stable fault current limiting operation of this SFCL was obtained.

시뮬레이션을 통한 자기결합을 이용한 초전도 한류기의 전류제한 특성 분석 (An Analysis on Current Limiting characteristics of an SFCL using Magnetic Coupling between Two Coils through Computer Simulation)

  • 김진석;안재민;임성훈;문종필;김재철;김철환;현옥배
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제10권1호
    • /
    • pp.42-47
    • /
    • 2008
  • In this paper, the fault current limiting characteristics for the superconducting fault current limiter(SFCL) using magnetic coupling between two coils were investigated. The SFCL consists of a high-$T_c$ superconducting(HTSC) element and two coils. This SFCL has different characteristics that depend on the connection form, the winding direction and the inductance ratio of two coils. The impedance and the operational current of the SFCL can be adjusted higher or lower than the resistance and the critical current of HTSC element. Therefore, the SFCL can change the amplitude of the limited fault current. To confirm it, the HTSC element was modeled and the fault current limiting characteristics of the SFCL were analysed through computer simulation. It was obtained from the analysis that the connection form and the winding direction of two coils of the SFCL were the important design parameters.

저항형 고온초전도 소자의 스위칭 동작을 이용한 브리지형 고온초전도 전류제한기의 동작 특성 (Operational Characteristics of Bridge Type SFCL Using Switching Operation of Resistive Type HTSC Element)

  • 임성훈;이상일;최효상;한병성
    • 대한전기학회논문지:전력기술부문A
    • /
    • 제53권11호
    • /
    • pp.619-623
    • /
    • 2004
  • We proposed the bridge type superconducting fault current limiter(SFCL) using switching operation of high-Tc superconducting(HTSC) thin film. The proposed bridge type SFCL consists of HTSC thin film, a diode bridge and a dc reactor. The controller for the operation of an interrupter is required in the conventional bridge type SFCL to prevent the continuous increase of fault current after a fault happens. On the other hand, the proposed bridge type SFCL can limit the fault current without the interrupter and the controller for its operation by the resistance generated when the gradually increased fault current exceeds HTSC thin film's critical current. We calculated the time when the gradually increased fault current started to be limited by the resistance generated in HTSC thin film after a fault happened and confirmed that it could be dependent on the amplitude of source voltage. The experimental results well agreed with the calculated ones from simulation.

저항형 고온초전도 소자의 스위칭동작을 이용한 브리지타입 고온초전도 전류제한기의 동작 특성 (Operational Characteristics of Bride Type SFCL Using Switching Operation of Resistive Type HTSC Element)

  • 임성훈;박충렬;이종화;고석철;박형민;최효상;한병성
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2004년도 춘계학술대회 논문집 전기기기 및 에너지변환시스템부문
    • /
    • pp.83-85
    • /
    • 2004
  • We proposed the bridge type fault current limiter(FCL) using switching operation of high-Tc superconducting(HTSC) thin film. The proposed bridge type FCL consists of HTSC thin film, a diode bridge and a dc reactor. The controller for the operation of an interrupter is required in the conventional bridge type FCL to prevent the continuous increase of fault current after a fault happens. On the other hand, the proposed bridge type FCL can limit the fault current without the interrupter and the controller for its operation by the resistance generated when the gradually increased fault current exceeds HTSC thin film's critical current. We calculated the time when the gradually increased fault current started to be limited by the resistance generated in HTSC thin film after a fault happened and confirmed that it could be dependent on the amplitude of source voltage. The experimental results well agreed with the calculated ones from simulation.

  • PDF

사고각에 따른 자속구속형 전류제한기의 전류제한특성 (Current Limiting Characteristics of Flux-Lock Type High-TC Superconducting Fault Current Limiter According to Fault Angles)

  • 박형민;임성훈;조용선;박충렬;한병성;최효상;현옥배
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2004년도 추계학술대회 논문집 전기기기 및 에너지변환시스템부문
    • /
    • pp.12-14
    • /
    • 2004
  • We investigated current limiting characteristics of the flux-lock type high-Tc superconcting fault current limiter(HTSC-FCL) according to fault angles. The Flux-lock type HTSC-FCL consists of primary and the secondary copper coils that are wound in parallel each other through the iron core and YBCO thin flim. In this paper, the current limiting characteristics of the flux-lock type HTSC-FCL according to fault angles in case of the subtractive and additive polarity windings were compared and analyzed. From the results, the flux-lock type HTSC-FCL could limit more quickly fault current as the fault angles increased irrespective of the fault angles. On the other hand, the initial power burden of HTSC element after a fault happened increased as the fault angles increased. In addition, it was confirmed that the resistance of flux-lock type HTSC-FCL in case of subtractive polarity winding was more increased than that of additive polarity winding and that the peak current of fault current in case of subtractive polarity winding was larger than that of the additive polarity winding case.

  • PDF

초전도소자의 트리거를 이용한 초전도 전류제한기의 전류제한 및 회복특성 분석 (Analysis on Current Limiting and Recovery Characteristics of a SFCL using a Trigger of Superconducting Element)

  • 임성훈
    • 조명전기설비학회논문지
    • /
    • 제24권1호
    • /
    • pp.112-116
    • /
    • 2010
  • 본 논문에서는 고장발생 초기에 초전도 전류제한기를 구성하는 초전도 소자의 ��치발생을 검출하여 고장전류의 경로를 별도의 상전도 전류제한기로 우회시킴으로써 초전도 전류제한기의 회복시간을 단축시킬 수 있는 초전도소자의 트리거를 이용한 초전도 전류제한기의 전류제한 및 회복특성에 대해 분석하였다. 고장전류 크기를 조절하기 용이한 구성요소로 상전도 전류제한기의 저항크기에 따른 초전도 전류제한기를 구성하고 있는 전력용스위치의 개방시점과 투입시점의 변화를 비교하였으며, 분석을 통해 상전도 전류 제한기의 저항이 증가할수록 초전도 전류제한기를 구성하는 전력용스위치의 복귀시간이 길게 나타남을 확인할 수 있었다.

Improvement of Current Limiting and Recovery Characteristics of Flux-Lock Type SFCL with Series Connection of Two Coils Using Its Third Coil

  • Ko, Seok-Cheol;Kim, Young-Pil;Lim, Sung-Hun
    • Journal of Electrical Engineering and Technology
    • /
    • 제12권1호
    • /
    • pp.472-477
    • /
    • 2017
  • In this work, the current limiting and recovery characteristics of a flux-lock type superconducting fault current limiter (SFCL) with series connection of two coils were effectively improved by adding a third winding into the conventional flux-lock type SFCL with series connection of two coils. To confirm the contribution of the third winding to the current limiting and recovery characteristics of this type of the SFCL, short-circuit testing was carried out with consideration of the third winding, and the effect of the third winding on the current limiting and recovery characteristics was examined by comparative analysis of the amplitude of the limited fault current and the power burden of the high-TC superconducting (HTSC) element comprising the SFCL. Through the analysis of both the limiting impedance and the operational current as the main design parameter of the SFCL, the improved current limiting and recovery characteristics of the flux-lock type SFCL using the third winding could be verified.