• Title/Summary/Keyword: HTSC

Search Result 113, Processing Time 0.025 seconds

Current Limiting Characteristics of Flux-Lock Type High-TC Superconducting Fault Current Limiter According to Fault Angles (사고각에 따른 자속구속형 전류제한기의 전류제한특성)

  • Park, Hyoung-Min;Lim, Sung-Hun;Cho, Yong-Sun;Park, Chung-Ryul;Han, Byoung-Sung;Choi, Hyo-Sang;Hyun, Ok-Bae
    • Proceedings of the KIEE Conference
    • /
    • 2004.10a
    • /
    • pp.12-14
    • /
    • 2004
  • We investigated current limiting characteristics of the flux-lock type high-Tc superconcting fault current limiter(HTSC-FCL) according to fault angles. The Flux-lock type HTSC-FCL consists of primary and the secondary copper coils that are wound in parallel each other through the iron core and YBCO thin flim. In this paper, the current limiting characteristics of the flux-lock type HTSC-FCL according to fault angles in case of the subtractive and additive polarity windings were compared and analyzed. From the results, the flux-lock type HTSC-FCL could limit more quickly fault current as the fault angles increased irrespective of the fault angles. On the other hand, the initial power burden of HTSC element after a fault happened increased as the fault angles increased. In addition, it was confirmed that the resistance of flux-lock type HTSC-FCL in case of subtractive polarity winding was more increased than that of additive polarity winding and that the peak current of fault current in case of subtractive polarity winding was larger than that of the additive polarity winding case.

  • PDF

Synthesis of La0.7Sr0.3Mn1-xIrxO3 thin-films in search of superconductivity

  • Byeongjun Seok;Youngdo Kim;Donghan Kim;Jongho Park;Changyoung Kim
    • Progress in Superconductivity and Cryogenics
    • /
    • v.25 no.2
    • /
    • pp.10-13
    • /
    • 2023
  • High-TC superconductivity (HTSC) has been the central issue in the field of condensed matter physics for decades. An essential part of the research on superconductivity is finding new exotic superconductors. It was recently suggested that Ir-substituted La0.7Sr0.3MnO3 (LSMIO) is a new high-TC superconductor. However, systematic studies to experimentally verify the superconductivity have not been done. Here, we report the growth processes of LSMIO thin films and their electrical transport properties. We observed a clear negative correlation between the intensity of the laser utilized for film deposition and the Curie temperature of the deposited film. We attributed this effect to the suppression of Sr concentration in the LSMIO films as the laser intensity increased. However, our LSMIO films show conventional ferromagnetism instead of HTSC. To realize the HTSC in LSMIO systems, further exploration of diverse compositions of LSMIO compounds is essential.

Current Limiting and Recovery Characteristics of Two Magnetically Coupled Type SFCL with Two Coils Connected in Parallel Using Dual Iron Cores (이중철심을 이용한 병렬연결된 자기결합형 초전도한류기의 전류제한 및 회복특성)

  • Ko, Seok-Cheol;Lim, Sung-Hun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.5
    • /
    • pp.717-722
    • /
    • 2016
  • In this paper, in order to support the peak current limiting function depending on the intensity of the fault current at the early stage of failure, a two magnetically coupled type superconducting fault current limiter (SFCL) is proposed, which includes high-Tc superconducting (HTSC) element 1, where the existing primary and secondary coils are connected to one iron core in parallel, and HTSC element 2, which is connected to the tertiary winding using an additional iron core. The results of the experiments in this study confirmed that the two magnetic coupling type SFCL having coil 1 and coil 2 connected in parallel using dual iron cores is capable of having only HTSC element 1 support the burden of the peak current when a failure occurs. The reason for this is that although HTSC element 1 was quenched and malfunctioned because the instantaneous factor of the initial fault current was large, the current flowing to coil 3 did not exceed the critical current, which would otherwise cause HTSC element 2 to be quenched and not function. In order to limit the peak current upon fault through the sequential HTSC elements, the design should allow it to have the same value as the low value of coil 1 while having coil 3 possess a higher self-inductance value than coil 2. In addition, a short-circuit simulation experiment was conducted to examine and validate the current limiting and recovery characteristics of the SFCL when the winding ratio between coil 1 and coil 2 was 0.25. Through the analysis of the short-circuit tests, the current limiting and recovery characteristics in the case of the additive polarity winding was confirmed to be superior to that of the subtractive polarity winding.

Analysis on Operational Current and Current Distribution between Two Coils of flux-lock Type SFCL (자속구속형 고온초전도 전류제한기의 동작전류와 각 코일의 전류분류 분석)

  • Park, Chung-Ryul;Lim, Sung-Hun;Park, Hyoung-Min;Cho, Hyo-Sang;Han, Byoung-Sung
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.18 no.8
    • /
    • pp.753-758
    • /
    • 2005
  • A flux-lock type superconducting fault current limiter(SFCL) consists of two coils, which are wound in parallel each other through an iron core, and a high-$T_c$ Superconducting(HTSC) thin film connected in series with coil 2. If the current of the HTSC thin film exceeds its critical current by the fault accident, the resistance of the HTSC thin film generated, and thereby the fault current can be limited by the impedance of the fluk-lock type SFCL. In this paper, we investigated the dependence of both the fault current limiting characteristics and the current distribution between two coils on the operational current of the flux-lock type SFCL through the equivalent circuit analyses and short circuit tests. From the comparison of both the results, the experimental results well agreed with the analyses for equivalent circuit.

Analysis of fault Current Limiting Characteristics due to Ratio of Inductances between Coil 1 and coil 2 in a Flux-lock Type SFCL (자속구속형 고온초전도 전류제한기의 인덕턴스 변화에 따른 전류제한 특성 분석)

  • Park, Chung-Ryul;Lim, Sung-Hun;Park, Hyoung-Min;Choi, Hyo-Sang;Han, Byoung-Sung
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.18 no.9
    • /
    • pp.856-862
    • /
    • 2005
  • A flux-lock type SFCL consists of two coils, which are wound in parallel each other through an iron core, and a HTSC thin film connected in series with coil 2. If the current of the HTSC thin film exceeds its critical current by the fault accident, the resistance generated of the HTSC thin film, and thereby the fault current can be limited by the impedance of the flux-lock type SFCL. The amplitude of fault current can be set by the impedance of the flux-lock type SFCL. In this paper, we investigated the variance of the limiting current due to the ratio of inductances between coil 1 and coil 2 in the flux-lock type SFCL through the computer simulations and short circuit tests. In addition, both the simulation results and experimental ones were compared each other. From the comparison of both the results, the simulation results agreed well with the experimental ones.

Analysis on Fault Current Limiting Characteristics of Three-Phase Transformer Type SFCL using Double Quench According to Three-Phase Ground-Fault Types (이중퀜치를 이용한 삼상변압기형 초전도한류기의 삼상지락 고장 종류에 따른 고장전류 제한 특성 분석)

  • Shin-Won Lee;Tae-Hee Han;Sung-Hun Lim
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.36 no.6
    • /
    • pp.614-619
    • /
    • 2023
  • The fault current limiting characteristics of three-phase transformer type superconducting fault current limiter (SFCL), which consisted of three-phase primary and secondary windings wound on E-I iron core, one high-TC superconducting (HTSC) element connected with the secondary winding of one phase and another HTSC element connected in parallel with other two secondary windings of two phases, were analyzed. Unlike other three-phase transformer type SFCLs with three HTSC elements, three-phase transformer type SFCL using double quench has the merit to perform fault current limiting operation for three-phase ground faults with two HTSC elements. To verify its proper three-phase ground fault current limiting operation, three-phase ground faults such as single-line ground, double-line ground and triple-line ground faults were generated in three-phase simulated power system installed with three-phase transformer type SFCL using double quench. From analysis of its fault current limiting characteristics based on tested results, three-phase transformer type SFCL using double quench was shown to be effectively operated for all three-phase ground faults.

Operational Characteristics of SFCL using Magnetic Coupling of Coils (코일의 자기결합을 이용한 초전도 사고전류제한기의 동작특성)

  • Lim, Sung-Hun;Kim, Jae-Chul
    • Proceedings of the KIEE Conference
    • /
    • 2007.04c
    • /
    • pp.68-70
    • /
    • 2007
  • The operational characteristics of superconducting fault current limiter (SFCL) using magnetic coupling of coils were investigated. This SFCL consists of a high-Tc superconducting (HTSC) element and two coils with series or parallel connection on the same iron. This SFCL has the merit that the operational current of SFCL can be increased higher than the critical current of the superconducting element by adjusting the inductance ratio between two coils. To confirm its operation, the circuit for the fault simulation was constructed. From the measured voltage and current of the SFCL, it was confirmed that the resistance of HTSC element comprising this SFCL increased more than that of HTSC element's independent operation.

  • PDF

Comparative Study of Current Limiting Characteristics for Hybrid Type and Flux-Lock Type SFCLs

  • Lim, Sung-Hun
    • Transactions on Electrical and Electronic Materials
    • /
    • v.8 no.5
    • /
    • pp.222-225
    • /
    • 2007
  • In this paper, we compared the current limiting characteristics of both the hybrid type and the flux-lock type superconducting fault current limiters(SFCLs), which have a magnetic coupling structure between a primary winding and several secondary windings. The limiting impedances of two SFCLs were derived from each equivalent circuit considering the design parameters of SFCL such as the self-inductance of secondary winding and the resistance of $high-T_C$ superconducting(HTSC) element. Through the comparison for the limiting impedances of two SFCLs considering the dependence of the HTSC element's resistance on the applying voltage into the SFCL, the hybrid type SFCL was confirmed to have larger limiting impedance with smaller resistance of HTSC element than the flux-lock type SFCL. It was expected from the analysis that the hybrid type SFCL was more advantageous than the flux-lock type SFCL from the viewpoint of the fault current limiting level.

Analysis on Power Burden of HTSC Module due to Fault Current's Amplitude of a Flux-Lock Type SFCL with Two Triggering Currents (두 트리거 전류를 갖는 자속구속형 초전도한류기의 고장전류 크기에 따른 초전도 모듈의 전력부담 분석)

  • Han, Tae-Hee;Lim, Sung-Hun
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.29 no.7
    • /
    • pp.424-428
    • /
    • 2016
  • In this paper, the power burden of High-TC superconducting (HTSC) module comprising the flux-lock type superconducting fault current limiter (SFCL) with two triggering currents during the fault period was analyzed. The short-circuit tests for the simulated power system with the SFCL in the different fault positions, which were expected to affect the amplitude of the fault current, were carried out. Through the comparative analysis on the power burden of the HTSC modules, the proposed flux-lock type SFCL was confirmed to be effective to divide into two power burdens according to the amplitude of the fault currents.