• Title/Summary/Keyword: HTS transformer

Search Result 123, Processing Time 0.034 seconds

Brief review of the field test and application of a superconducting fault current limiter

  • Hyun, Ok-Bae
    • Progress in Superconductivity and Cryogenics
    • /
    • v.19 no.4
    • /
    • pp.1-11
    • /
    • 2017
  • This article reviews the recent activities of field testing and application of superconducting fault current limiters (SFCL) based on high-temperature superconductors (HTS). The review particularly focuses on the trends in the field tests in terms of the technical aspects and commercial activities of the SFCLs. Stimulated by the discovery of HTS, numerous research and development activities have been conducted worldwide for SFCLs operating from distribution voltages to transmission voltages. Different types of SFCLs have been developed and field-tested. Consequently, more than 20 field tests and applications have been performed on real grids worldwide while supplying electric power to the customers. These field tests have not only provided the track records of the operation experiences including the problems and maintenance during operation, but also proved their current limiting capabilities against real faults, rendering this new technology highly viable. Through these activities, the following trends in the status of field testing and application are observed. Resistive-type SFCLs with HTS-coated conductors were dominantly used in the most recent field tests. This implies that the resistive type is technically more mature than the other types. Bus-bar coupling and transformer feeders were the major application locations. It is of importance that most of the field applications were conducted as R&D projects. A relevant change from the R&D stage to the application stage is shown as recently deployed SFCLs are expected to be under long-term operation and commercial service. Here, we review the installation of these SFCLs by substation. This review also discusses the recent activities for their commercial applications.

Study on the Comparison between DC and AC for Breakdown Characteristics of Dielectric Insulating Materials for Design of HTS Transformer in Cryogenic Environment (고온 초전도 변압기 설계를 위한 극저온환경에서 DC/AC의 절연지별 절연파괴 특성연구)

  • Park, Tae-Gun;Lee, Sang-Hwa;Shin, Woo-Ju;Seong, Jae-Kyu;Oh, Seok-Ho;Hwang, Jae-Sang;Lee, Bang-Wook
    • Proceedings of the KIEE Conference
    • /
    • 2011.07a
    • /
    • pp.1564-1565
    • /
    • 2011
  • 고온 초전도(HTS) 변압기는 절연수명의 손실 없이 과부하 용량의 증가와 효율의 향상이 가능하여 기존의 변압기와는 달리 구조물의 소형화로 공간 배치가 용이하고 환경 친화적 이어서 전력시스템 운용 전반에 걸쳐 많은 이점을 제공한다. 하지만, 이러한 이점에도 불구하고 AC전압이 인가되었을 때, 교류손실에 의한 심각한 효율의 감소는 불가피하다. 따라서, HTS 변압기뿐만 아니라 고온초전도전력기기들에 대한 DC전압의 적용은 초전도상에서 전기적 저항이 거의 0이라는 큰 이점을 가지고 있기 때문에 초전도 전력기기 시스템에서 최선의 선택으로 여기어지고 있다. 그러므로 DC고온초전도 전력기기들을 개발하기 위해서는 극저온상에서의 DC 절연 특성과 같은 기초연구들이 선행 되어야 한다. 그러나, 지금까지 이 분야에 대한 연구가 많이 부족한 실정이다. 본 논문에서는 현재 초전도 전력기기의 대표적인 절연 매질인 Kraft, Kapton(Polymide)와 Nomax(Type 410)을 가지고 권선대 권선의 형상을 모의하여 DC와 AC의 절연파괴 특성의 차이점을 분석하였다. 실험의 결과로부터, 극저온상에서 각각의 절연매질에 따른 DC와 AC의 절연파괴 특성을 확인할 수 있었다.

  • PDF

Domestic Efforts for SFCL Application and Hybrid SFCL (국내 초전도 한류기 요구와 하이브리드 초전도 한류기)

  • Hyun, O.B.;Kim, H.R.;Yim, Y.S.;Sim, J.;Park, K.B.;Oh, I.S.
    • Progress in Superconductivity
    • /
    • v.10 no.1
    • /
    • pp.60-67
    • /
    • 2008
  • We present domestic efforts for superconducting fault current limiter (SFCL) application in the Korea Electric Power Corporation (KEPCO) grid and pending points at issue. KEPCO's decision to upgrade the 154 kV/22.9 kV main transformer from 60 MVA to 100 MVA cast a problem of high fault current in the 22.9 kV distribution lines. The grid planners supported adopting an SFCL to control the fault current. This environment friendly to SFCL application must be highly dependent upon the successful development of SFCL having specifications that domestic utility required. The required conditions are (1) small size of not greater than twice of 22.9 kV gas insulated switch-gear (GIS), (2) sustainability of current limitation without the line breaking by circuit breakers (CB) for maximum 1.5 seconds. Also, optionally, recommended is (3) the reclosing capability. Conventional resistive SFCLs do not meet (1) $\sim$ (3) all together. A hybrid SFCL is an excellent solution to meet the conditions. The hybrid SFCL consists of HTS SFCL components for fault detection and line commutation, a fast switch (FS) to break the primary path, and a limiter. This characteristic structure not only enables excellent current limiting performances and the reclosing capability, but also allows drastic reduction of HTS volume and small size of the cryostat, resulting in economic feasibility and compactness of the equipment. External current limiter also enables long term limitation since it is far less sensitive to heat generation than HTS. Semi-active operation is another advantage of the hybrid structure. We will discuss more pending points at issues such as maintenance-free long term operation, small size to accommodate the in-house substation, passive and active control, back-up plans, diagnosis, and so on.

  • PDF

Study of Spacer for HTS Transformer (고온 초전도 변압기용 spacer 연구)

  • Kim, Sang-Hyun;Back, Seong-Myeong;Kim, Yeong-Seok;Han, Cheol-Su;Joung, Soon-Yong;Joung, Jong-Man
    • Proceedings of the KIEE Conference
    • /
    • 2001.11a
    • /
    • pp.238-240
    • /
    • 2001
  • 초전도 응용 기기의 실용화를 위해서는 극저온 냉매의 절연기술이 확립되어야 한다. 특히, 취급이 용이하고 경제성이 높은 액체 질소를 냉매로 사용하는 고온 초전도 응용 기기 개발이 활발히 이루어지고 있어 여러 고온초전도 응용 기기 중 고온 초전도 변압기의 pancake-coil 형 권선에서의 spacer에 대한 절연 특성을 연구하였다. 이때 spacer는 pancake-coil의 턴간 절연내력을 유지하여야 하며, 또한 냉매 유동 통로를 확보하여야 한다. 하지만 실용상에 있어서는 절연물의 계면을 따라서 진전하는 연면 방전에 의한 절연내력이 관통절연 파괴전압에 비해 낮아 절연 설계 시 유의해야 한다. 따라서 pancake-coil형 고온초전도 변압기 권선을 위한 spacer에 대한 연면 방전 특성을 연구하였다.

  • PDF

Breakdown Properties of Cryogenic Coolant for Pancake Coil Type High $T_{c}$ Superconducting Equipment (Pancake coil형 고온초전도 기기의 응용을 위한 극저온 냉매의 절연파괴 특성)

  • 백승명;정종만;이진호;김상현
    • Proceedings of the Korea Institute of Applied Superconductivity and Cryogenics Conference
    • /
    • 2002.02a
    • /
    • pp.185-188
    • /
    • 2002
  • In the design of superconducting power equipments such as transformer, cable and fault current limit, knowledge of the dielectric behavior of both liquid and gaseous at very low temperatures is very importance. Especially, Electrical properties of liquid nitrogen($LN_{2}$) and gaseous nitrogen($GN_{2}$) have become of great interest again since the discovery of high temperature superconductors. However, many sources of $LN_{2}$and $GN_{2}$ problems in the test of pancake coil model arising form the deficiency of insulation data. Therefore, this paper describes the results of an experimental study on the ac breakdown voltage($V_{B}$) properties of $LN_2$ and Air under the electrode of simulated HTS pancake coil. The ac breakdown voltage of $GN_{2}$ have been measured by pancake coil-pancake coil gaps over the temperature range of 293 K to 77 K.

  • PDF

Operation and Configurgation of Superconducting Machines and Devices in Utility System (초전도전력설비의 구성 및 운전)

  • 홍원표;이원규;곽희로
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 1996.11a
    • /
    • pp.116-121
    • /
    • 1996
  • An image of future power system which has introduced superconducting generator, cable, transformer, fault current limiter, SMES and so on is presented. Conceptual designs of each SC machines and devices are carried out. The SC cable and SFCL utilize the high Tc superconductor(HTS) cooled by liquid $N_2$Other devices use low temperature superconducting cooled by He. The SC power system models are proposed detailedly. In viewpoint of the operation and control SC power system, The concrete design direction and effective role of each SC apparatus are investigated. In this paper, it is pointed that superconducting fault limiters(SFCLs) should play an important part of the quenching current level coordination to prevent the other SC devices from quenching. Finially, SFCL are also expected to he very effective to introduce flexibility of power system configuration and operation due to their possibility to enhance transient stability and reduce short circuit current.

  • PDF

AC Losses of 154 kV/5 MVA HTS Transformer by winding structures (154 kv/5 MVA 고온 초전도 변압기의 권선구조에 따른 교류손실)

  • Choi, J.;Lee, S.;Kim, W.;Park, M.;Lee, J.;Choi, K.
    • Proceedings of the KIEE Conference
    • /
    • 2007.04c
    • /
    • pp.41-42
    • /
    • 2007
  • 초전도 변압기의 권선에서 발생하는 교류손실은 시스템의 효율과 안정성에 큰 영향을 미친다. 본 논문에서는 고온 초전도 변압기의 권선 구조에 따른 교류손실과 % 임피던스 특성을 살펴보았다. 변압기 철심의 형태가 내철형과 의철형인 경우에 대하여 설계를 하였으며 각 형태에 따른 교류손실과 % 임피던스를 계산하였다. 154 kV/5 MVA 고온 초전도 변압기의 두 가지 철심 형태의 해석을 통해 각각의 특성을 비교하였다.

  • PDF

Analysis of AC Losses in 154 kV Class 5 MVA HTS Transformer (154 kV급 5 MVA 고온초전도 변압기의 교류손실)

  • Choi, Jee-Hoon;Lee, Seung-Wook;Kim, Woo-Seok;Lee, Ji-Kwang;Choi, Kyeong-Dal;Hahn, Song-Yeop
    • Proceedings of the KIEE Conference
    • /
    • 2007.07a
    • /
    • pp.146-147
    • /
    • 2007
  • 초전도체는 일반도체와 달리 직류 전류 인가 시에 저항이 발생하지 않지만 교류 전류 인가 시에는 히스테리시스에 의한 교류 손실이 발생한다. 이러한 초전도 선재를 이용하여 제작한 초전도 변압기에서 발생하는 교류손실은 변압기의 효율 감소 및 온도 상승으로 인해 초전도 변압기의 안정성을 저하시키는 요인으로 작용한다. 본 논문에서는 외철형의 구조를 갖는 154 kV급 5 MVA 고온 초전도 변압기를 YBCOCC 선재를 사용하여 설계하였다. 또한 2차원 수치해석을 통해 YBCOCC 선재의 자화 손실을 계산하고, 이를 154 kV급 5 MVA 고온 초전도변압기의 권선부에서 발생하는 수직 방향의 자장에 적용하여 변압기의 교류손실을 계산하고 그 결과를 나타내었다.

  • PDF

Short-circuit Analysis of Solenoid and Pancake Type Bifilar Winding Magnets using BSCCO tape

  • Park Dong Keun;Ahn Min Cheol;Yang Seong Eun;Yoon Il Gu;Kim Young Jae;Ko Tae Kuk
    • Progress in Superconductivity and Cryogenics
    • /
    • v.7 no.4
    • /
    • pp.28-31
    • /
    • 2005
  • To verify the feasibility of bifilar winding type superconducting fault current limiter (SFCL) using BSCCO tape, two types of magnets were fabricated and tested by short-circuit in this research. Even if the FCL using high Tc superconducting (HTS) tape has zero resistance in normal state, it needs to be wound as a bifilar winding for zero inductance. Solenoid type and pancake type bifilar winding magnets are designed and fabricated with the same length of BSCCO tape. The test system consists of AC power supply, transformer, fault switch, load and bifilar winding magnet. The applied AC voltages during fault duration, 0.1s, were from 0.5V to 20V. The test results without bifilar winding magnet were compared with those with each type magnets. The test results include voltage against magnet, transport current and generated resistance curve. Thermal stability, the recovery time, was studied from the results of two type magnets. The pancake type was the most effective to limit fault current but the solenoid type was thermally the most stable. From this research, short-circuit characteristics of the two types were obtained.

Short-circuit Analysis by the Application of Control Signal of Power Converter to the Inductive Fault Current Limiter

  • Ahn, Min-Cheol;Hyoungku Kang;Bae, Duck-Kweon;Minseok Joo;Park, Dong-Keun;Lee, Sang-Jin;Ko, Tae-Kuk
    • Progress in Superconductivity and Cryogenics
    • /
    • v.6 no.2
    • /
    • pp.25-28
    • /
    • 2004
  • Three-phase inductive superconducting fault current limiter (SFCL) with DC reactor rated on 6.6 $KV_{rms}/200 A_{rms}$ has been developed in Korea. This system consists of one DC reactor, AC/DC power converter, and a three-phase transformer, which is called magnetic core reactor (MCR). This paper deals with the short-circuit analysis of the SFCL. The DC reactor was the HTS solenoid coil whose inductance was 84mH. The power converter was performed as the dual-mode operation for dividing voltage between the rectifying devices. The short-term normal operation (1 see) and short-circuit tests (2∼3 cycles) of this SFCL were performed successfully. In regular short-circuit test, the fault current was limited as 30% of rated short-circuit current at 2 cycles after the fault. The experimental results have a very similar tendency to the simulation results. Using the technique for the fault detection and SCR firing control, the fault current limiting rate of the SFCL was improved. From this research, the parameters for design and manufacture of large-scale SFCL were obtained.