• Title/Summary/Keyword: HTS power cable

Search Result 216, Processing Time 0.034 seconds

Characterisitics of the over current of Bi-2223 HTS tape (Bi-2223 고온초전도선의 과전류 통전특성)

  • Kim, Jae-Ho;Sim, Ki-Deok;Cho, Jeon-Wook;Kim, Hae-Jun;Kwag, Dong-Soon;Seong, Ki-Chul;Kim, Hae-Jong
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2005.07a
    • /
    • pp.284-285
    • /
    • 2005
  • Bi-2223 High-Temperature Superconducting(HTS) tape is one of the most widely used HTS tape for power application. Characteristics of the over current of HTS tape with different sheath are described. This paper presents the basic properties such as temperature and resistivity rise of the Bi-2223 HTS tape which is exposed to the over current. It is expected that results from this study can be utilized as basic data in designing superconducting power devices.

  • PDF

Design of Multi-Layer HTS Power Transmission Cable Considering Balanced Current Distribution and Reducing AC Los (균일 전류분포 및 교류손실을 고려한 다층 고온초전도 전력케이블의 설계)

  • Joo, Jin-Hong;Kim, Seog-Whan;Bae, Joon-Han;Kim, Hae-Jong;Cho, Jeon-Wook;Seong, Ki-Chul;Lee, Ji-Kwang;Hong, Jung-Pyo
    • Proceedings of the KIEE Conference
    • /
    • 2002.07b
    • /
    • pp.750-752
    • /
    • 2002
  • An HTS power cable has multi-layer conductor structure to increase the current capacity. However, usually the current is not evenly distributed among the layers. This paper describes a method to make the current distribution more uniform and hence reduce the AC loss. Also. this paper shows recommendation for future cable conductor prototypes.

  • PDF

Pitch Calculation of 4-layer HTS Power Transmission Cable far Balanced Sharing Current

  • Joo, Jin-Hong;Kim, Seog-Whan;Jeonwook Cho;Bae, Joon-Han;Kim, Hae-Jong;Seong, Ki-Chul;Hong, Jung-Pyo
    • Progress in Superconductivity and Cryogenics
    • /
    • v.5 no.1
    • /
    • pp.35-39
    • /
    • 2003
  • A typical HTS power transmission cable has multi-layer conductor structure to increase the current capacity. The tapes of the innermost layer are wound on a round former, and adjacent tapes of another layer are separated by a thin insulating film. However, usually the current is not evenly distributed among the layers because of inductance difference of each layer, and the inductance is provided by the winding pitch of each layer's tape. Consequently n method to make the current distribution more uniform is a adjusting the tape winding pitch, hence reduce the AC loss. This paper describes a current distribution by adjusting a tape winding pitch of each layer. Also, this paper shows recommendations for future cable conductor prototypes.

Development of a real-time simulation method for the power application of the HTS tape (고온초전도 선의 전력 응용을 위한 실시간 시뮬레이션 기법 개발)

  • Kim, Jae-Ho;Park, Dae-Jin;Kang, Jin-Ju;Cho, Jeon-Wook;Sim, Ki-Deok;Park, Min-Won;Yu, In-Keun
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.06a
    • /
    • pp.89-90
    • /
    • 2006
  • In this paper, the authors propose the RTDS (Real Time Digital Simulator) simulation method which puts a real HTS (High Temperature Superconducting) tape into the simulated voltage feedback system of HTS tape. To perform the RTDS based simulation, the voltage feedback system of HTS tape with hardware is designed and connected to the RTDS. This simulation method is the world first in order to obtain much better for installation of HTS power cable into a utility network.

  • PDF

A Study on Numerical Analysis of the AC Loss in a Single-layer Superconducting Cable Sample (단층 초전도케이블 샘플에서 교류손실의 수치해석에 대한 연구)

  • Li, Zhu-Yong;Ma, Yong-Hu;Ryu, Kyung-Woo;Hwang, Si-Dole
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.22 no.7
    • /
    • pp.606-611
    • /
    • 2009
  • AC loss is one of the important factors for commercialization of a high temperature superconducting (HTS) cable from an economic point of view. But AC loss characteristics of the HTS-cable are not elucidated completely because of its complex structure. As an earlier stage of analyzing the AC loss in the 22.9 kV/50 MVA, 100m HTS-cable system of Korea Electric Power Corporation (KEPCO) which is now in collaboration with us, a two-dimensional (2D) numerical model, which takes into account the nonlinear conductivity properties of a high temperature superconductor, has been developed. In order to examine our 2D model, we have prepared several single-layer cable samples whose AC losses are sufficiently reliable due to their simple structure. The AC losses of the samples were experimentally investigated and then compared with our 2D model. The results show that the numerically calculated AC losses are not in good agreement with the measured ones for the cylindrical cable and deca-cable samples with low critical current density. However, the numerically calculated and measured AC losses are relatively in good agreement for the deca-cable and hex-cable samples with high critical current density, although the difference between these two loss data in the deca-cable sample tends to increase in the low current region.

Uniform Current Distribution among Conductor Layers in HTS Cables Using Inter-Phase Transformers (Inter-Phase Transformers를 이용한 고온 초전도 케이블의 층간 전류 등분배 방안)

  • 최용선;황시돌;현옥배;임성우;박인규
    • Progress in Superconductivity
    • /
    • v.5 no.2
    • /
    • pp.144-148
    • /
    • 2004
  • Uniform current distribution among conductor layers in HTS cables using IPTs (inter-phase transformers) was investigated. Conventional methods for current distribution, in which resistors are inserted to conductor layers, causes additional loss. In contrast, IPTs, which use magnetic coupling, make it possible that the current in parallel circuits is distributed uniformly with any load, and minimize the loss. In this study, IPTs were designed and fabricated for examination of uniform current distribution in the conductor layers of HTS cables. The ITP was designed through calculation of its impedance that can cancel the inductance of the conduction layers. The experimental setup consisted of four IPTs and four inductors that simulate the conductor layer inductance. Each layer was designed to feed 10 A. We examined the behavior of current distribution with IPTs for various layer inductances.

  • PDF

Effects of HTS Cable Applied to the Voltage Stability Limited Power System (전압 안정도 제약계통에 대한 고온초전도 케이블 적용효과)

  • Lee, Geun-Joon;Hwang, Si-Dol
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.18 no.5
    • /
    • pp.169-173
    • /
    • 2004
  • This paper presents the basic application idea of superconductor cable for voltage stability limited power system. In bulk power system, the transfer capability of transmission line is often limited by the voltage stability, and superconductor cable could be one of the countermeasure to enhance heat transfer limit as well as voltage stability limit. Steady state voltage stability approach by P-V curve is used to calculate the maximum transfer capability of initial system and superconductor applied system. IEEE-14 bus system is used to demonstrate its applicability.

Numerical Analysis and Measurement of Magnetization Loss in BSCCO Multi-stacked Conductor According to Stacking Geometry (적층 배열형상에 따른 BSCCO 적층선재의 자화손실 특성 수치해석 및 측정)

  • Park, Myung-Jin;Lim, Hyoung-Woo;Lee, Kwang-Youn;Cha, Guee-Soo;Lee, Ji-Kwang
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.55 no.2
    • /
    • pp.83-88
    • /
    • 2006
  • AC loss is one of the main research area in AC power application using high temperature superconductor(HTS), such as HTS transformer, HTS current limiter and HTS cable, because it is closely related to efficiency, economic estimation and design of power device. A lot of research for various arrangements of HTS tapes have been performed to increase a capacity of transport current because single HTS tape can not satisfy the demanded current capacity in HTS power application. In this paper, we studied magnetization loss by different several arrangements of BSCCO tapes such as Edge-to-Edge type, Face-to-Face type and Matrix type through numerical analysis by 2D-FEM and measurement. As a result, we got the result that the magnetization loss of Face-to-Face type arrangements was lower than those of other arrangement types under the conditions of the same stacking number. We think that the result was due to shield effect by demagnetization of adjacent HTS tapes which are located face to face.

Reliability Assesment of 22.9kV High Temperature Superconducting Cable System (22.9kV 초전도케이블 시스템의 신뢰성 평가)

  • Sohn, Song-Ho;Lim, Ji-Hyun;Sung, Tae-Hyun;Ryoo, Hee-Suk;Yang, Hyung-Suk;Kim, Dong-Lak;Hwang, Si-Dole
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.06a
    • /
    • pp.248-248
    • /
    • 2007
  • Demands for electricity are growing, whereas the rate of electricity infrastructure's construction declines gradually. To keep the balance of the demand and supply, the share of underground transmission line will be increased from 8.3% to 10.5% in 2020 but it will be accompanied with enormous public expenses. A great concern in high capacity transmission is on the increase so as to maximize the spacial efficiency. High Temperature Superconducting (HTS) cable is in the lime light which has the merits of environment-friendly, low transmission loss and high transmission with low voltage, but the reliability verification as a power system is yet to be solved. KEPCO completed the installation and acceptance of $3{\phi}$, 22.9kV, 1250A class HTS cable system in 2006 and the long term test is in progress. The test results focusing on long term reliability are presented in this paper.

  • PDF