• Title/Summary/Keyword: HTS pancake coil

Search Result 60, Processing Time 0.026 seconds

Wind-and-flip technique for the fabrication of a persistent mode superconductive magnet by using a coated conductor

  • Lee, Hee-Gyoun;Kim, Jae-Geun;Kim, Woo-Seok;Lee, Seung-Wook;Choi, Kyeong-Dal;Hong, Gye-Won;Ko, Tae-Kuk
    • Progress in Superconductivity and Cryogenics
    • /
    • v.9 no.2
    • /
    • pp.7-10
    • /
    • 2007
  • Persistent mode HTS pancake coil has been fabricated using a coated conductor by a "wind-and-flip" method. A coated conductor with the length of 1.2 meters was divided at the center along the length. The sliced coated conductor was wound on a pair of bobbins with a diameter of around 4 cm and two pancake coils connected superconductively without a resistive joint were prepared. By flipping one of the pancake coils, the magnetic field generated by each coil is to be aligned to the same direction and generate meaningful magnetic field while the magnetic fields of two spit coils are canceled without flipping. Permanent current was induced by flowing current to the coil immersed in liquid nitrogen pool using a power supply. A magnetic field of 48.8 Gauss was generated when 20 A of current was flowing in the pancake coils. The "Wind and flip" method can be applied for the fabrication of a long solenoid magnet by winding a sliced coated conductor on a cylindrical bobbin. It is also introduced that the construction of multiple sets of pancake (or solenoid) coils is possible by a "wind-and-flip" method using a wide coated conductor.

Design and fabrication of race-track type field coil for the high temperature superconduction generator

  • Baik, S.K.;Jo, Y.S.;Ha, H.S.;Lee, E.Y.;Jeong, D.Y.;Kwon, Y.K.;Ryu, K.S.;Sohn, M.H.
    • 한국초전도학회:학술대회논문집
    • /
    • v.10
    • /
    • pp.248-251
    • /
    • 2000
  • The fabrication and characteristics of HTS race-track type field coil for generators was carried out. Field coils are composed of 3 pancake coils wound by 37-filamental Bi-2223/Ag-alloy tapes. The winding machine is horizontal type. The critical currents (I$_c$) of the superconducting tapes were measured with variation of bending strain and external magnetic fields. I$_c$ of both whole field coils and 3 pancake coils were measured as a function of temperature. At 77K under the self-field, I$_c$ of whole field coils was 12A, while in the case of middle pancake coil, I$_c$ was 15A. The distribution of magnetic field B was obtained, using 3-D FEM. Our simulation showed that maximums of B${\bot}$A in x-y plane were locally distributed in both the upper and the lower coils. In addition, the fabrication processes and the characteristics of field coil are described.

  • PDF

Quench and Recovery Characteristics of Non-Inductively Wound HTS Coils with Various Winding (권선방식에 따른 무유도 권선형 HTS 코일의 퀜치 및 회복 비교특성)

  • Jo, Hyun-Chul;Chang, Ki-Sung;Kim, Young-Jae;Choi, Suk-Jin;Hwang, Young-Jin;Kim, Won-Cheol;Ko, Tae-Kuk
    • Progress in Superconductivity and Cryogenics
    • /
    • v.12 no.1
    • /
    • pp.37-41
    • /
    • 2010
  • To limit fault current in a power system, superconducting fault current limiters (SFCLs) using high temperature superconducting (HTS) coils have been developed by many research groups so far. Non-inductive winding of HTS coils used for SFCLs can be classified into solenoid winding and pancake winding. Each of winding is expected to have different quench and recovery characteristics because the structure of solenoid winding differs from pancake winding's. Therefore it is important to the SFCLs application to investigate characteristics of each winding. In this paper, we deal with quench and recovery characteristics of four kinds of winding : solenoid winding, pancake winding without spacers, and with spacers of 2 and 4 mm thickness. In order to obtain quench and recovery parameters of coils, short circuit tests were performed in liquid nitrogen.

Transport Loss Characteristic of the Bifilar Pancake Type Fault Current Limiting Coil using Coated Conductor (Coated Conductor를 사용한 무유도 팬케이크형 한류 코일의 통전 손실 특성)

  • Park, Dong-Keun;Bang, Joo-Seok;Yang, Seong-Eun;Ahn, Min-Cheol;Sim, Ki-Deok;Yoon, Yong-Soo;Nam, Kwan-Woo;Seok, Bok-Yeol;Ko, Tae-Kuk
    • Progress in Superconductivity and Cryogenics
    • /
    • v.9 no.3
    • /
    • pp.21-25
    • /
    • 2007
  • Superconducting fault current limiter (SFCL) is attractive apparatus to reduce fault current in power grid. Since it is applied to the alternating current (AC) power line, the SFCL has losses in the normal operation. Recently, coated conductor (CC) is noticeable material employed for resistive bifilar winding type SFCL in many research groups. Bifilar structure is expected to have low AC loss by magnetic field offset as compared with the single tape structure in the same length. This paper reports about characteristic of bifilar pancake type coil for SFCL application in AC loss aspect. The bifilar coil is wound using CC with facing on HTS sides each other. Transport AC loss measurement and characteristic analysis of the bifilar coil using CC have been performed at 77K. The test results are compared with the Norris equations and the test results of non-inductively wound paralleled solenoid type coil which is suggested and tested in this group at present.

Analysis of an HTS coil for large scale superconducting magnetic energy storage

  • Lee, Ji-Young;Lee, Seyeon;Choi, Kyeongdal;Park, Sang Ho;Hong, Gye-Won;Kim, Sung Soo;Lee, Ji-Kwang;Kim, Woo-Seok
    • Progress in Superconductivity and Cryogenics
    • /
    • v.17 no.2
    • /
    • pp.45-49
    • /
    • 2015
  • It has been well known that a toroid is the inevitable shape for a high temperature superconducting (HTS) coil as a component of a large scale superconducting magnetic energy storage system (SMES) because it is the best option to minimize a magnetic field intensity applied perpendicularly to the HTS wires. Even though a perfect toroid coil does not have a perpendicular magnetic field, for a practical toroid coil composed of many HTS pancake coils, some type of perpendicular magnetic field cannot be avoided, which is a major cause of degradation of the HTS wires. In order to suggest an optimum design solution for an HTS SMES system, we need an accurate, fast, and effective calculation for the magnetic field, mechanical stresses, and stored energy. As a calculation method for these criteria, a numerical calculation such as an finite element method (FEM) has usually been adopted. However, a 3-dimensional FEM can involve complicated calculation and can be relatively time consuming, which leads to very inefficient iterations for an optimal design process. In this paper, we suggested an intuitive and effective way to determine the maximum magnetic field intensity in the HTS coil by using an analytic and statistical calculation method. We were able to achieve a remarkable reduction of the calculation time by using this method. The calculation results using this method for sample model coils were compared with those obtained by conventional numerical method to verify the accuracy and availability of this proposed method. After the successful substitution of this calculation method for the proposed design program, a similar method of determining the maximum mechanical stress in the HTS coil will also be studied as a future work.

Study of Spacer for HTS Transformer (고온 초전도 변압기용 spacer 연구)

  • Kim, Sang-Hyun;Back, Seong-Myeong;Kim, Yeong-Seok;Han, Cheol-Su;Joung, Soon-Yong;Joung, Jong-Man
    • Proceedings of the KIEE Conference
    • /
    • 2001.11a
    • /
    • pp.238-240
    • /
    • 2001
  • 초전도 응용 기기의 실용화를 위해서는 극저온 냉매의 절연기술이 확립되어야 한다. 특히, 취급이 용이하고 경제성이 높은 액체 질소를 냉매로 사용하는 고온 초전도 응용 기기 개발이 활발히 이루어지고 있어 여러 고온초전도 응용 기기 중 고온 초전도 변압기의 pancake-coil 형 권선에서의 spacer에 대한 절연 특성을 연구하였다. 이때 spacer는 pancake-coil의 턴간 절연내력을 유지하여야 하며, 또한 냉매 유동 통로를 확보하여야 한다. 하지만 실용상에 있어서는 절연물의 계면을 따라서 진전하는 연면 방전에 의한 절연내력이 관통절연 파괴전압에 비해 낮아 절연 설계 시 유의해야 한다. 따라서 pancake-coil형 고온초전도 변압기 권선을 위한 spacer에 대한 연면 방전 특성을 연구하였다.

  • PDF

Improvement of Degradation Characteristics in a Large, Racetrack-shaped 2G HTS Coil for MW-class Rotating Machines

  • Park, Heui Joo;Kim, Yeong-chun;Moon, Heejong;Park, Minwon;Yu, Inkeun
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.3
    • /
    • pp.1166-1172
    • /
    • 2018
  • Degradation due to delamination occurs frequently in the high temperature superconductors (HTS) coil of rotating machines made with 2nd generation (2G) HTS wire, and the authors have observed other similar cases. Since an HTS field coil for a rotating machine is required to have stable current control and maintain a steady state, co-winding techniques for insulation material and epoxy resin for shape retention and heat transfer improvement are applied during coil fabrication. However, the most important limiting factor of this technique is delamination, which is known to be caused by the difference in thermal expansion between the epoxy resin and 2G HTS wire. Therefore, in this study, the experimental results of mixing the ratio of epoxy resin and alumina ($Al_2O3$) filler were applied to the fabrication of small and large test coils to solve the problem of degradation. For the verification of this scheme, eight prototypes of single pancake coils with different shapes were fabricated. They showed good results. The energization and operation maintenance tests of the stacked coils were carried out under liquid neon conditions similar to the operation temperature of an MW-class rotating machine. In conclusion, it was confirmed that the alumina powder mixed with epoxy resin in an appropriate ratio is an effective solution of de-lamination problem of 2G HTS coil.

A design of multi-width HTS magnets considering both wire consumption and field homogeneity

  • Yang, Hongmin;Ahn, Minchul
    • Progress in Superconductivity and Cryogenics
    • /
    • v.23 no.2
    • /
    • pp.24-27
    • /
    • 2021
  • This paper presents a design methodology of high-temperature superconducting (HTS) magnets. The magnet consists of several double pancake coils with a variety of wire width. This technique, named Multi-Width, is well known to make efficient use of the superconducting wire. It is common for design of high-temperature superconducting magnets to not only reduce wire consumption used, but also consider the homogeneity of the magnetic field. In this paper, we study a design method that efficiently reduces wire usage while considering magnetic field homogeneity. The design is carried out by calculating the critical current and the critical magnetic field according to the configuration of arranging the thickness of the wire to determine the number of windings. The width of wire comprising the magnet was set to 4 - 12 mm, and the number of double pancake coils was set to an even number to consist of top-down symmetry. To verify the validity of the design, we compared the progress of the design code with a complete enumeration survey. As a case study, we designed a magnet that generates a central magnetic field of 3 T or more in a 240 mm bore in diameter. Optimality can be evaluated by weighing wire consumption and field homogeneity according to the magnet's use or user preference.

Stability Against Heat Pulse for Bi-2223 HTS Pancake Coils with Different Ag/SC Ratio (은비가 다른 Bi-2223 고온초전도 팬케이크 코일의 히트펄스에 대하 안정성)

  • 장현만;오상수;하홍수;하동우;류강식;김상현
    • Progress in Superconductivity and Cryogenics
    • /
    • v.1 no.2
    • /
    • pp.43-48
    • /
    • 1999
  • The normal zone propagation (NZP) velocity and V-I characteristics of two Bi-2223 pancake coils with different Ag/SC ratio were investigated based on the experimental results and broad resistive transition were obesved in two coils. The measured NZP velocity of coil was found to be faster due to increase of Ag/SC ratio, and agree well with calculated data from two dimensional heat balance equation.

  • PDF

A 100 HP HTS Motor Design and the Performance Analysis (100 HP급 고온초전도 모터의 설계 및 성능 해석)

  • 백승규;손명환;김석환;이언용;권영길
    • Progress in Superconductivity and Cryogenics
    • /
    • v.4 no.2
    • /
    • pp.31-37
    • /
    • 2002
  • A 100 〔HP〕 rated synchronous motor with superconducting rotating field winding has been designed based on the formulated equations established from 2 dimensional magnetic field distributions in a cylindrical coordinate The cross-section was drawn based on calculated design results via Fortran program and then modeled with FEM (Finite Element Method) to investigate the machine performances. First of all, the magnetic field distributions are analysed in many ways according to the field directions and the armature currents. Especially after the rotating Held winding is arranged with BSCCO-2223 high-temperature superconducting(HTS) pancake coils, the exerted magnetic field normally on the HTS tape is calculated through FEM. And the machine output power is calculated according to the torque ang1es which lie between the field and the armature main flux lines. Moreover, this Paper includes the eddy-current loss variations of a copper damper located between the field and the armature coils and design considerations of the 100 HP HTS motor utilizing ferro-magnetic material.