• 제목/요약/키워드: HTS magnet

검색결과 194건 처리시간 0.035초

600kJ급 전도냉각 HTS SMES의 미니모델 제작 및 절연평가 (The Manufacture and Insulating Test of Mini-model for 600kJ Class Conduction Cooled HTS SMES)

  • 최재형;곽동순;천현권;민치현;김해종;김상현
    • 전기학회논문지
    • /
    • 제56권3호
    • /
    • pp.588-593
    • /
    • 2007
  • The 600kJ class high temperature superconducting magnetic energy storage (HTS SMES) system is being developed by Korean Electrotechnology Research Institute (KERI). The system is operated in cryogenic temperature and high vacuum condition. The SMS magnet was cooled by conduction cooling method using a Gifford-McMahon cycle cryocooler. Thus, electric insulation design at cryogenic temperature and high vacuum is a key and an important element that should be established to accomplish compact design is a big advantage of HTS SMES. This paper describes the electric insulation design, fabrication and experimental results for a mini model of conduction cooled HTS SMES.

전도냉각형 HTS SMES 개발을 위한 미니모델의 절연성능평가 (Insulation test of Mini model for the Development of the conduction cooled HTS SMES)

  • 최재형;곽동순;천현권;김해종;성기철;김상현
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제9권1호
    • /
    • pp.32-36
    • /
    • 2007
  • The 600 kJ calss high-temperature superconducting(HTS) SMES(superconducting magnetic energy storage) system is being developed by Korean Electrotechnology Research Institute(KERI). The system is operated in cryogenic temperature and high vacuum condition. The SMES magnet was cooled by conduction cooling method using a Gifford-McMahon cycle cryocooler. Thus the electric insulation design at cryogenic temperature and high vacuum is a key and an important element. Because it accomplish compact design that is a big advantage of HTS SMES. This paper describes the electric insulation design, fabrication and experimental results for a mini model of conduction cooled HTS SMES.

Contact resistance increment of no-insulation REBCO magnet during a quench

  • Im, Chaemin;Cho, Mincheol;Bang, Jeseok;Kim, Jaemin;Hahn, Seungyong
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제21권1호
    • /
    • pp.31-35
    • /
    • 2019
  • The lumped-parameter circuit model for a no- insulation (NI) high temperature superconductor (HTS) magnet has been well understood after many experimental and analytic studies over a decade. It successfully explains the non-linear charging behaviors of NI magnets. Yet, recently, multiple groups reported that the post-quench electromechanical behaviors of an NI HTS magnet may not be well explained by the lumped circuit model. The characteristic resistance of an NI magnet is one of the key parameters to characterize the so-called "NI behaviors" of an NI magnet and recently a few groups reported a potential that the characteristic resistance of an NI magnet may substantially vary during a quench. This paper deals with this issue, the increment of contact resistance of the no-insulation (NI) REBCO magnet during a quench and its impact on the post-quench behaviors. A 7 T 78 mm NI REBCO magnet that was previously built by the MIT Francis Bitter Magnet Laboratory was chosen for our simulation to investigate the increment of contact resistance to better duplicate the post-quench coil voltages in the simulation. The simulation results showed that using the contact resistance value measured in the liquid nitrogen test, the magnitude of the current through the coil must be much greater than the critical current. This indicates that the value of the contact resistance should increase sharply after the quench occurs, depending on the lumped circuit model.

100마력 동기전동기용 고온초전도 계자권선 제작과 특성 (Fabrication and Characteristics of HTS Field Winding of a 100 hp Synchronous Motor)

  • 손명환;백승규;이언용;권영길;조영식;문태선;김영춘;권운식
    • 대한전기학회논문지:전기기기및에너지변환시스템부문B
    • /
    • 제54권2호
    • /
    • pp.88-93
    • /
    • 2005
  • To develop a 100 hp high temperature superconducting(HTS) motor with high efficiency first in Korea, we fabricated a HTS field winding and test. HTS field winding is composed of sixteen HTS race track shaped coils wound with stainless steel-reinforced Bi-2223 tape conductor by react and wind fabrication method. Nomex paper was used for electrical insulation. Each of four magnet pole assemblies was constructed with four double pancake sub-coils, mechanically stacked and electrically in series. Four magnet assemblies were fixed on an aluminum support structure to make effective heat transfer. The Critical current (Ic) was 41.5A at 77K and self field. However the lowest Ic value of sub-coils was 35A. Joule heat generated by each joints between sub-coils was lower than 1mW at 77K and 34A. And Joule heat generated by the joints between field coils was lower than 10mW at 77K and 34A. Joule heat of the whole field winding was 1W at 77K and 32A. And so, the lowest Ic value of sub-coils was more important than Joule heats generated by all joints. The operating current must be lower than the lowest Ic of all the sub-coils. In this paper, design, construction and testing of HTS field winding, Joule heat generated by the joints, and operating current were discussed.

초전도회전기용 래이스트랙형 고온초전도 마그네트 설계 및 제작 (Design and Fabrication of Racetrack type High Tc Superconducting Magnet for the Superconducting Rotating Machine)

  • 손명환;백승규;조영식;이언용;권영길;류강식
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2001년도 춘계학술대회 논문집 전기기기 및 에너지변환시스템부문
    • /
    • pp.3-5
    • /
    • 2001
  • Racetrack coils are used in many areas of superconductivity applications such as generators, motors, maglev, wiggler magnets and so on. The fabrication and characteristics of race-track type High Tc Superconducting (HTS) magnets were carried out. The Magnet is composed of 3 pancake coils wound by 37-filamental Bi-2223/ Ag-alloy tapes. Quench current ($I_q$) of both whole magnet and 3 pancake coils were measured. At 77K under the self-field, $I_q$ of magnet was 12A, while in the case of middle pancake coil, $I_q$ was 15A. The upper pancake coils of racetrack magnet with iron plates, magnet having optimized current distribution and initial magnet are compared with each other through 3D FEA, manufacturing and testing these magnets. The measured performance of the upper pancake coil #3 with iron plates improved by 50% on the basis of initial pancake coil #3. Quench current ($I_q$) of field winding was 12A. In addition, the fabrication processes and the characteristics of HTS magnet are described.

  • PDF

초전도 특성평가장치용 고온 초전도 마그네트의 개념 설계 (The Conceptual Design of High-Tc superconducting Magnet for a Superconducting Property Measurement System)

  • 최석진;이세연;배준한;손명환;김우석;박찬;이지광;이상진;최경달
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제11권1호
    • /
    • pp.20-24
    • /
    • 2009
  • The superconducting property measurement system is used to acquire electrical and thermal properties on short HTS tape samples and the system is composed of specimen holder for mounting HTS tape and a magnet for applying magnetic fields externally. The magnet consists of two split racetrack windings and is designed to produce maximum 3T of center field. The temperature of specimen holder can be varied in range from 10K to 77K. The field homogeneity is required less than 300 gauss stray field contour within 20cm axially and 3cm radially from origin. We have worked on the conceptual designs of the conduction-cooled magnet for the superconducting characteristic measurement system. The measurement system will be fabricated in near future based on the design parameters presented in this paper.

운전전류를 고려한 고온초전도 모터용 계자코일의 설계 (Design of Field Coil for High Temperature Superconducting motor considering Operating Current)

  • 조영식;서무교;백승규;김석환;손명환;권영길;홍정표
    • 한국초전도저온공학회:학술대회논문집
    • /
    • 한국초전도저온공학회 2002년도 학술대회 논문집
    • /
    • pp.315-317
    • /
    • 2002
  • The value of I$_{c}$(critical current) in HTS (High Temperature Superconducting) tape has a great influence on B(equation omitted) (magnetic field amplitude applied perpendicular to the tape surface). Therefore, I$_{c}$ of HTS magnet is determined by not only operating temperature but also the B(equation omitted). In shape design of field coil for the HTS motor, a method to reduce the B(equation omitted) and to determine operating current should be considered in order to optimal design. On the basis of the magnetic field analysis, this paper deals with various field coil shape to obtain operating current of HTS motor by using analytical method. And also this paper discusses the operating current of 100hp class HTS motor by using I$_{c}$-B(equation omitted) curve.curve.

  • PDF

고온초전도자석 충전용 히터트리거 스위칭 시스템에 관한 연구 (A Study on the Heater-Triggered Switching System for Charging of a HTS Magnet)

  • 배덕권;안민철;최석진;김영식;김호민;이찬주;윤용수;이상진;신철기
    • 한국초전도저온공학회:학술대회논문집
    • /
    • 한국초전도저온공학회 2001년도 학술대회 논문집
    • /
    • pp.76-79
    • /
    • 2001
  • The heater-triggered switching system for charging of a high temperature superconductor(HTS) is prepared by simulation and investigated its characteristic by experiment. heater-triggered switching system consists of two nickel-chrome alloy heater, an electromagnet and YBCO bulk HTS. There are three important parameters to generate the pumping-current in this system. The timing sequential control of two heters and electromagnet is an important factor to generate pumping-current in the YBCO bulk HTS. Thermal analysis of the switching part in YBCO bulk HTS according to the heater input current was carried out. Electromagnet of 0.6[T] and DC heater input current of 2.3[A] were optimally derived. In this experiment, the maximum pumping current is reaches about 12[A].

  • PDF

Conceptual design and fabrication test of the HTS magnets for a 500 W-class superconducting DC rotating machine under 77 K

  • Choi, J.;Kim, S.K.
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제23권4호
    • /
    • pp.35-38
    • /
    • 2021
  • Conventional direct current (DC) rotating machines are usually used for crane and press machine using high torque in metal and steel industries, because of a constant output power along variable rotating speed. A general DC motor with permanent field magnets could not increase a magnetic flux density at a gap between armature coils and field magnets. However, a superconducting DC motor has field magnets composed with high temperature superconducting (HTS) coils and it could increase the magnetic flux density at the gap to over 10 times than those of a general DC motor by control the excitation current into HTS coils. The superconducting DC motor could be operated with extremely high torque and constant output power at a low rotational speed. In this paper, a 500 W superconducting DC rotating machine was conceptually designed with a LN2 (Liquid Nitrogen) cooling method and the operation characteristics results of HTS field magnets were presented. The two no-insulation HTS magnets for a 500 W superconducting DC rotating machine were fabricated. The excitation current for the HTS magnets could be controlled from 0 to 40 A. This test results will be available to design large-sized HTS magnets for a number of hundred kW class superconducting DC rotating machine under LN2 cooling system.

Key parameters of toroidal HTS coil for a superconducting magnetic energy storage system

  • Miyeon, Yoon;Jinwoo, Han;Ji-Kwang, Lee;Kyeongdal, Choi;Jung Tae, Lee;Seungyong, Hahn;Woo-Seok, Kim
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제24권4호
    • /
    • pp.50-54
    • /
    • 2022
  • High temperature superconducting (HTS) magnets for large-capacity energy storage system need to be composed of toroid magnets with high energy density, low leakage magnetic fields, and easy installation. To realize such a large capacity of a toroid HTS magnet, an HTS cable with large current capacity would be preferred because of the limited DC link voltage and instantaneous high power required for compensation of the disturbance in the power grid. In this paper, the optimal operating strategies of the SMES for peak load reduction of the microgrid system were calculated according to the load variation characteristics, and the effect of compensation of the frequency change in microgrid with a SMES were also simulated. Based on the result of the simulation, key design parameters of SMES coil were presented for two cases to define the specification of the HTS cable with large current capacities for winding of HTS toroid coils, which will be need for development of the HTS cable as a future work.