• 제목/요약/키워드: HTS cable insulation

검색결과 49건 처리시간 0.017초

고온초전도 케이블의 절연파괴 특성에 미치는 Butt gap의 영향 (Effect of Butt Gap in the Electrical Breakdown Properties of a HTS Cable)

  • 곽동순;김영석;김해종;조전욱;김상현
    • 한국전기전자재료학회논문지
    • /
    • 제17권3호
    • /
    • pp.333-339
    • /
    • 2004
  • For an electrical insulation design of HTS cable, it is important to understand the dielectric characteristics of insulation materials in L$N_2$ and the insulation type. Generally, the electrical insulation of HTS Cable is classified into two types of the composite insulation and solid insulation type. In this research, we selected the insulation paper/L$N_2$ composite insulation type for the electric insulation of a HTS cable, and studied electric insulation characteristics of synthetic Laminated Polypropylene Paper(LPP) in liquid nitrogen(L$N_2$) for the application to high temperature superconducting(HTS) cable. Furthermore, we compared the breakdown characteristics of the butt gap and bended mini-model cable. It is necessary to understand the winding parameter of insulation paper/LN2 composite insulation.

154 kV급 고온초전도 케이블 및 단말의 전기절연 설계 (Electrical Insulation Design of a 154 kV Class HTS Cable and Termination)

  • 곽동순;천현권;최재형;김해종;조전욱;김상현
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제9권1호
    • /
    • pp.61-66
    • /
    • 2007
  • A transmission class high-temperature superconducting(HTS) power cable system is being developed in Korea. For insulation design of this cable the grading method of insulating paper is proposed. Two kinds of laminated polypropylene paper that has different thickness has been used as the electrical insulation material. The use of graded insulation gives improved mechanical bending properties of the cable. In a HTS cable technology the terminations are important components. A HTS cable termination is energized with the line-to-ground voltage between the coaxial center and outer surrounding conductors. in the axial direction. There is also a temperature difference from ambient to about 77 K. For insulation design of this termination, glass fiber reinforced plastic(GFRP) was used as the insulation material of the termination body, and the capacitance-graded method is proposed. This paper will report on the experimental investigations on impulse breakdown and surface flashover characteristics of the insulation materials for insulation design of a transmission class HTS power cable and termination. Based on these experimental data, the electrical insulation design of a transmission class HTS power cable and termination was carried out.

The Effect of Butt Gap in Insulation Properties for a HTS Cable

  • D.S.Kwag;Kim, Y.S.;Kim, H.J.;Kim, S.H.
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제5권3호
    • /
    • pp.43-47
    • /
    • 2003
  • For an electrical insulation design of HTS cable, it is important to understand the dielectric characteristics of insulation materials in $LN_2$ and the insulation type. Generally, the electrical insulation of HTS Cable is classified into two types of the composite insulation and solid insulation type. In this research, we selected the insulation paper/$LN_2$ composite insulation type for the electric insulation of a HTS cable, and studied electric insulation characteristics of synthetic Laminated Polypropylene Paper (LPP) in liquid nitrogen ($LN_2$) for the application to high temperature superconducting (HTS) cable. Furthermore, we compared the breakdown characteristics of the butt gap and bended mini-model cable. It is necessary to understand the winding parameter of insulation paper/$LN_2$ composite insulation.

154kV급 고온초전도 전력케이블의 전기절연 설계 (Insulation Design for a 154 kV Class HTS Power Cable)

  • 곽동순;천현권;최재형;김해종;조전욱;윤문수;김상현
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제8권1호
    • /
    • pp.29-33
    • /
    • 2006
  • A 154 kV class high temperature superconducting (HTS) power cable system is developing in Korea. For insulation design or this cable, the grading method of insulating paper is proposed. The use of graded insulation gives improved bending properties of the cable. Therefore, we discussed the electrical stress distribution and calculation for grading insulation design of a HTS cable. Also. the basic insulation design of 154 kV class HTS power cable was done.

고온초전도 케이블의 전기절연 설계 및 시험평가 (Electrical Insulation Design and Experimental Results of a High-Tc Superconducting Cable)

  • 곽동순;천현권;최재형;김해종;조전욱;김상현
    • 대한전기학회논문지:전기기기및에너지변환시스템부문B
    • /
    • 제55권12호
    • /
    • pp.640-645
    • /
    • 2006
  • A 22.9kV/50MVA class high temperature superconducting(HTS) power cable system was developed in Korea. For the optimization of electrical insulation design for a HTS cable, it is necessary to investigate the ac breakdown impulse breakdown and partial discharge inception stress of the liquid nitrogen/laminated polypropylene paper(LPP) composite insulation system. They were used to insulation design of the model cable for a 22.9kV class HTS power cable and the model cable was manufactured. The insulation test of the manufactured model cable was evaluated in various conditions and was satisfied standard technical specification in Korea. Base on these experimental data, the single and 3 phase HTS cable of a prototype were manufactured and verified.

154 kV급 HTS 케이블의 절연설계 및 굴곡시험 (Design of Insulation and Bending Test for a 154 kV Class HTS Cable)

  • 최진욱;최재형;임응춘;김해종;조전욱;김상현
    • 한국전기전자재료학회논문지
    • /
    • 제21권11호
    • /
    • pp.1024-1028
    • /
    • 2008
  • It is important that study on cryogenic electrical insulation design to develop the cold dielectric(CD) type HTS cable because the cable is operated under the high voltage environment in cryogenic temperature. This paper proposes two types of insulation design to carry out the maximum insulation design for 154 kV-class HT cable. The proposed insulation design method takes into consideration AC and lightning impulse withstand voltage so as to prevent AC breakdown for power frequency operating voltage during operating the cable and breakdown for lightning impulse voltage. The final insulation thickness is determined by selecting high value out of two insulation thickness calculated through the two insulation design methods. And we researched electrical insulation characteristics of HTS cable according to bending ratio and the number of bending.

Electrical Insulation Design of a 154kV-Class HTS Power Cable

  • Choi, Jin-Wook;Kwag, Dong-Soon;Choi, Jae-Hyeong;Kim, Hae-Jong;Cho, Jeon-Wook;Kim, Sang-Hyun
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제11권2호
    • /
    • pp.25-28
    • /
    • 2009
  • A 154kV class high-temperature superconducting (HTS) power cable system is developing in Korea. For insulation design of this cable, it is important that study on cryogenic electrical insulation design to develop the cold dielectric type HTS cable because the cable is operated under the high voltage environment in cryogenic temperature. Therefore, this paper describes a design method for the electrical insulation layer of the cold dielectric type HTS cable adopting the partial discharge-free design under ac stress, based on the experimental results such a ac breakdown strength, partial discharge inception stress, $V_{ac}$-t characteristics, $V_{imp}$-n characteristics, and impulse breakdown strength of liquid nitrogen/laminated polypropylene paper (LPP) composite insulation system in which the mini-model cable is immersed into pressurized liquid nitrogen.

고온초전도 케이블의 유전 특성 (Dielectric Characteristics of HTS Cable)

  • 곽동순;김해종;조전욱;성기철;김상현
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2002년도 제4회 영호남학술대회 논문집
    • /
    • pp.64-68
    • /
    • 2002
  • According to the increasing power demand for the future construction of many underground cables will be required. However, construction of new ducts for power cables will be more difficult. Therefore, research work for realizing the high temperature superconducting(HTS) cable has advanced, where the development of electrical insulating system at cryogenic temperature is one of the major researches. For an electrical insulation design of HTS cable, it is important to understand not only breakdown but also partial discharge and dielectric loss($tan{\delta}$) in liquid nitrogen/paper composite insulation system. In this paper, we investigated breakdown characteristics in liquid nitrogen/paper composite insulation system for the application to HTS cable. And, we studied the breakdown characteristics of the multi-layer and butt gap of the insulation papers in liquid nitrogen. Also, we measured dielectric loss($tan{\delta}$) of the mini-model Cable made of TERLAM IPP.

  • PDF

고온초전도 DC케이블용 LPP의 액체질소 중 DC 및 임펄스 절연파괴 특성 (DC and impulse electrical breakdown characteristics of LPP in liquid nitrogen for a HTS DC cable)

  • 곽동순;천현권;최재형;민치현;김해종;조전욱;김상현
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제9권3호
    • /
    • pp.52-56
    • /
    • 2007
  • A high temperature superconducting (HTS) DC cable is ideal for transmitting large blocks of electrical power over a long distance. However, it must be designed to operate reliably within the constraints of the electrical systems. Therefore, a study of the electrical insulation is important to develop a HTS DC cable because it is operated in a cryogenic high voltage environment. This paper discusses the dielectric constructions of the cable and summarizes the experimental results on the DC and impulse dielectric characteristics of the insulation material. in sheet form and mini-model cable configuration. This shows how to design such insulation to be operated reliably. These studies are essential for the insulation design of a HTS DC cable operated in cryogenic environment.

Insulation Test for the 22.9 kV Class HTS Power Transmission Cable

  • J.W. Cho;Kim, H.J.;K.C. Seong;H.M. Jang;Kim, D.W.;Kim, S.H.
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제5권3호
    • /
    • pp.48-51
    • /
    • 2003
  • HTS power transmission cable is expected to transport large electric power with a compact size. We are developing a 3-core, 22.9 kV, 50 MVA class HTS power cable, and each core consists of a conductor and shield wound with Bi-2223 tapes, electrical insulation with laminated polypropylene paper (LPP) impregnated with liquid nitrogen. This paper describes the design and experimental results of the model cable for the 22.9 kV, 50 MVA class HTS power transmission cable. The model cable was used the SUS tapes instead of HTS tapes because of testing the electrical characteristics only. The model cable was 1.3 m long and electrical insulation thickness was 4.5 mm. The model cable was evaluated the partial discharge (PD), AC and Impulse withstand voltage in liquid nitrogen. The AC and Impulse withstands voltage and PD inception stress was satisfied with the standard of Korea Electric Power Corporation (KEPCO) in the test results. The 3-core 22.9 kV, 50 MVA class HTS power cable has been designed and manufactured based on these experimental results.