• Title/Summary/Keyword: HTS(high temperature superconductor)

Search Result 178, Processing Time 0.027 seconds

The Optimum Shape of Taper HTS Current Lead Having Partial Current Sharing Region (일부 전류분류 영역을 갖는 테이퍼 형상 전류도입선의 최적 형상에 대한 연구)

  • 허광수;설승윤
    • Proceedings of the Korea Institute of Applied Superconductivity and Cryogenics Conference
    • /
    • 2003.10a
    • /
    • pp.185-189
    • /
    • 2003
  • The purpose of this study is to obtain the optimal operating condition of conduction cooled taper shape high-temperature superconductor (HTS) current lead operated in current sharing mode. In our previous study, we discovered that the optimal operating condition of constant cross-section area HTS current lead is in the current sharing state, and in optimal condition, the temperature gradient at warm end is not zero. The analysis result of taper HTS current lead is quiet similar to the constant area HTS current lead. The minimum dissipation of taper HTS current lead is not influenced by taper angle, however the optimal operation condition is varied with taper angle.

  • PDF

The Basic Insulation Characteristics of Solid-Nitrogen for Cryocooling of HTS Systems (고온초전도 시스템 냉각용 고화질소의 기초 절연 특성)

  • Choi, Jae-Hyeong;Choi, Jin-Wook;Lee, Hai-Gun;Song, Jung-Bin;Kim, Hae-Jong;Seong, Ki-Chul;Kim, Sang-Hyun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.1
    • /
    • pp.132-136
    • /
    • 2009
  • Recently, for improvement of the magnetic field of high temperature superconductor (HTS) apparatus, many studies investigating on operating in the range of $20{\sim}65\;K$ with liquid helium or the conducting method using cryocooler are actively reviewed. Also, the cooling method using solid nitrogen as cryogen is being suggested. Since the nitrogen has very large specific heat in solid state, it is expected that it can be operated for a long time without a continuous supply of cooling energy. However, there are still insufficient data on the characteristics of solid nitrogen such as thermodynamic properties and liquid-solid phase change. Especially, there was almost no study done on the electrical insulation properties of solid nitrogen so far. In this study, solid nitrogen to find the electrical characteristics was made by using cryocooler and cryostat, and investigated the flashover discharge and breakdown. The results of this study will be useful as a basic data for electrical insulation design of the HTS system using solid nitrogen as cryogen.

Progress of HTS rotating machine development in Japan

  • Nakamura, Taketsune
    • Progress in Superconductivity and Cryogenics
    • /
    • v.13 no.2
    • /
    • pp.1-4
    • /
    • 2011
  • This paper describes current status of High Temperature Superconductor (HTS) rotating machinery development in Japan. Recent advances in production technology of HTS materials have continuously stimulated the development of high performance rotating machines. One of the most promising applications for such machines is the ship propulsion, and then some major projects have been underway. Also, energetic challenges for the HTS drive motor, e.g., automobile, have started. Furthermore, low speed and large capacity HTS generators are considered to be exciting candidates for wind turbines. The technology trends of the HTS rotating machines is introduced and discussed in this review paper.

Influence of polymer coating on SFCL recovery under load

  • Gorbunova, D.A.;Kumarov, D.R.;Scherbakov, V.I.;Sim, Kideok;Hwang, Soon
    • Progress in Superconductivity and Cryogenics
    • /
    • v.21 no.4
    • /
    • pp.44-47
    • /
    • 2019
  • This paper is a study of recovery under load process of superconducting fault current limiter (SFCL). SFCL consists of five parallel-connected high-temperature superconductor (HTS) tapes additionally stabilized by stainless tape. Previously, HTS was heated by current pulse to simulate a short circuit in a power grid. During the cooling period, the current amplitude decreased to 23% or less of HTS critical current value, which is the simulation of network re-switching. When HTS with a polymer coating is cooled, temperature gradient on thermal insulation layer occurs, that prevents a boiling crisis and improves the heat sink into liquid nitrogen. Two samples are coated with a 30 ㎛ and 50 ㎛ polylactide (PLA) layers, reference sample has no polymer coating on it. Samples with a polymer coating show 3-5 times faster cooling than the reference one.

New Cooling Techniques of High Tc Superconductor Systems (고온초전도 시스템의 새로운 냉각기술)

  • Chang, Ho-Myung
    • 한국초전도학회:학술대회논문집
    • /
    • v.9
    • /
    • pp.7-11
    • /
    • 1999
  • The recent progress in new cooling techniques of the high Tc superconductor(HTS) systems is reported and discussed with some practical examples. At the beginning stage of the HTS development in research laboratories, liquid nitrogen(LN$_2$) is the standard medium for an effective cooling. The success of HTS in many different application areas, however, has required a variety of need in the cooling temperature and the cooling capacity with specific design restrictions. While the utilization of alternative liquid cryogens such as liquid neon (LNe) or liquid hydrogen (LH$_2$) has been tired in some of them, even solid cryogens such as solid nitrogen (SN$_2$) or solid hydrogen (SH$_2$) may be another option in special applications. The gaseous helium cooled by a cryogenic refrigerator has also been a good candidate in many cases. One of the best cooling methods for the HTS is the direct conduction-cooling by a closed-cycle refrigerator with no cryogen at all. The refrigeration may be based on Joul-Thomson, Brayton, Stirling, Gifford-McMahon, or pulse tube cycles. The pros and cons of the newly proposed cooling methods are described and some significant design issues are presented.

  • PDF

Parametric Study of AC Current Lead for the Termination of HTS Power Cable

  • Kim, D.L;Kim, S.H.;S. Cho;H.S. Yang;Kim, D.H.;H.S. Ryoo;K.C. Seong
    • Progress in Superconductivity and Cryogenics
    • /
    • v.5 no.1
    • /
    • pp.107-110
    • /
    • 2003
  • High Temperature Superconductor (HTS) transmission cable can carry more than 2 to 5 times higher electricity and also obtain substantially lower transmission losses than conventional cables. Liquid nitrogen is to be used to cool the HTS power cable and its cost is much cheaper than the liquid helium used for the cooling of metal superconducting wire. In Korea the HTS power cable development project has been ongoing since July, 2001 with the basic specifications of 22.9kV, 50MVA and told dielectric type as the first 3-year stage. The cryogenic system of the HTS cable is composed of HTS cable cryostat termination and refrigeration system. Termination of HTS cable is a connecting part between copper electrical cable at room temperature and HTS cable at liquid nitrogen temperature. In order to design the termination cryostat, it is required that the conduction heat leak and Joule heating on the current lead be reduced, the cryostat be insulated electrically and good vacuum insulation be maintained during long time operation. Heat loads calculations on the copper current lead have been performed by analytical and numerical method and the feasibility study fer the other candidate materials has also been executed.

Stress analysis of HTS racetrack coils for 10 MW class superconducting wind power generator (10 MW 급 초전도 풍력발전기용 고온초전도 레이스트렉 코일의 응력 해석)

  • Kim, Kwangmin;Kim, Gyeong-Hun;Park, Minwon;Yu, In-Keun
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.18 no.2
    • /
    • pp.13-18
    • /
    • 2013
  • The authors designed a high temperature superconductor (HTS) racetrack coil for a 10 MW class superconducting synchronous wind turbine generator. The designed HTS racetrack coil was analyzed by an electromagnetic finite element method (FEM) to determine the magnetic field distribution, inductance, stress, etc. This paper describes the stress analysis and structure design result of the HTS racetrack coil for 10 MW class superconducting synchronous wind turbine generators, considering orthotropic material properties, a large magnetic field, and the resulting Lorentz force effect. Insulated HTS racetrack coils and no-insulation HTS racetrack coils were also considered. According to the results of the stress analysis, the no-insulation HTS racetrack coil results were better than the insulated HTS racetrack coil results.

Critical Current Degradation Characteristics by Temperature Difference of L$N_2$-Normal in Repetitive Bending Strain of High Temperature Superconducting Tape (고온 초전도 선재의 굽힘횟수와 온도차에 의한 임계전류저하특성)

  • 김해준;김석환;송규정;김해종;배준한;조전욱;성기철
    • Proceedings of the Korea Institute of Applied Superconductivity and Cryogenics Conference
    • /
    • 2003.10a
    • /
    • pp.274-277
    • /
    • 2003
  • Critical current(Ic) degradation of HTS tapes after bending is one of the hottest issues in HTS development and application studies. Many people are measuring Ic degradations for effect of bending radius. However even if the bending radius is larger than the breaking radius a HTS tapes can be damaged by repetitive bending, which is unavoidable in the winding processes. Therefore, We studied the Ic degradation after repetitive bending. at 77K with self-field, of Bi-2223 tapes processed by "Powder-in-Tube" technique, which was made by America Superconductor Corporation(AMSC) and superconductiing tapes that strain is imposed measured critical current by temperature difference of L$N_2$ and normal temperature. Like this, critical current could measure that degradation about 1~3% by temperature difference. These results will amount the most important basis data in power electric machine of superconductivity cable, magnet, etc that winding work is require.

  • PDF

A simulation study on the variation of virtual NMR signals by winding, bobbin, spacer error of HTS magnet

  • Kim, Junseong;Lee, Woo Seung;Kim, Jinsub;Song, Seunghyun;Nam, Seokho;Jeon, Haeryong;Baek, Geonwoo;Ko, Tae Kuk
    • Progress in Superconductivity and Cryogenics
    • /
    • v.18 no.3
    • /
    • pp.21-24
    • /
    • 2016
  • Recently, production technique and property of the High-Temperature Superconductor (HTS) tape have been improved. Thus, the study on applying an HTS magnet to the high magnetic field application is rapidly increased. A Nuclear Magnetic Resonance (NMR) spectrometer requires high magnitude and homogeneous of central magnetic field. However, the HTS magnet has fabrication errors because shape of HTS is tape and HTS magnet is manufactured by winding HTS tape to the bobbin. The fabrication errors are winding error, bobbin diameter error, spacer thickness error and so on. The winding error occurs when HTS tape is departed from the arranged position on the bobbin. The bobbin diameter and spacer thickness error occur since the diameter of bobbin and spacer are inaccurate. These errors lead magnitude and homogeneity of central magnetic field to be different from its ideal design. The purpose of this paper is to investigate the effect of winding error, bobbin diameter error and spacer thickness error on the central field and field homogeneity of HTS magnet using the virtual NMR signals in MATLAB simulation.

Design of HTS power cable with fault current limiting function

  • Kim, Dongmin;Kim, Sungkyu;Cho, Jeonwook;Kim, Seokho
    • Progress in Superconductivity and Cryogenics
    • /
    • v.22 no.1
    • /
    • pp.7-11
    • /
    • 2020
  • As demand for electricity in urban areas increases, it is necessary to improve electric power stability by interconnecting neighboring substations and high temperature superconductor (HTS) power cables are considered as a promising option due to its large power capacity. However, the interconnection of substations reduces grid impedance and expected fault current is over 45 kA, which exceeds the capacity of a circuit breaker in Korean grid. To reduce the fault current below 45 kA, a HTS power cable having a fault current limiting (FCL) function is considered by as a feasible solution for the interconnection of substations. In this study, a FCL HTS power cable of 600 MVA/154 kV, transmission level class, is considered to reduce the fault current from 63 kA to less than 45 kA by generating an impedance over 1 Ωwhen the fault current is induced. For the thermal design of FCL HTS power cable, a parametric study is conducted to meet a required temperature limit and impedance by modifying the cable core from usual HTS power cables which are designed to bypass the fault current through cable former. The analysis results give a minimum cable length and an area of stainless steel former to suppress the temperature of cable below a design limit.