• 제목/요약/키워드: HT-29 cell

Search Result 390, Processing Time 0.022 seconds

Inhibitory Effect of Lactobacillus plantarum Extracts on HT-29 Colon Cancer Cell Apoptosis Induced by Staphylococcus aureus and Its Alpha-Toxin

  • Kim, Hangeun;Kim, Hye Sun;Park, Woo Jung;Chung, Dae Kyun
    • Journal of Microbiology and Biotechnology
    • /
    • v.25 no.11
    • /
    • pp.1849-1855
    • /
    • 2015
  • Staphylococcus aureus plays an important role in sepsis, septic shock, pneumonia, and wound infections. Here, we demonstrate that Lactobacillus plantarum extracts inhibited S. aureus-induced cell death of a human epithelial cell line, HT-29. In particular, we have shown that S. aureus-induced cell death was abolished by neutralization of α-toxin, indicating that α-toxin is the major mediator of S. aureus-induced cell death. DNA fragmentation experiment and caspase assay revealed that the S. aureus-induced cell death was apoptosis. L. plantarum extracts inhibited the generation of effector caspase-3 and the initiator caspase-9 in S. aureus- or α-toxin-induced cell death. Moreover, expression of Bcl-2, an anti-apoptotic protein, was activated in L. plantarum extract-treated cells as compared with the S. aureus- or α-toxin-treated only cells. Furthermore, S. aureus-induced apoptosis was efficiently inhibited by lipoteichoic acid and peptidoglycan of L. plantarum. Together, our results suggest that L. plantarum extracts can inhibit the S. aureus-mediated apoptosis, which is associated with S. aureus spreading, in intestinal epithelial cells, and may provide a new therapeutic reagent to treat bacterial infections.

Effects of the Petroleum-ether Extract of Ginseng on the Cell Cycle and Protein Kinase C Activity in Cancer Cells (인삼 Petroleum-ether 추출물이 종양세포의 증식 주기 진행 및 Protein Kinase C의 활성에 미치는 영향)

  • 박민경;황우익
    • Journal of Ginseng Research
    • /
    • v.20 no.3
    • /
    • pp.219-225
    • /
    • 1996
  • This study was performed to investigate the inhibition mechanism of cancer cell proof iferation caused by the petroleum-ether extract of ginseng against human rectum (HRT-18), colon (HT-29), llepatoma (Hep G2) and prostate (LNCaP) cancer cells and monkey kidney cells (Vero 76). Cells were treated with the petroleum-ether extract of ginseng (50 to 200 $\mu\textrm{g}$/ml) in G1 or S phase of the cell cycle, and proliferation and protein kinase C activity were measured. The petroleum-eth or extract of ginseng inhibited proliferation of HRT-18, HT-29, Hep G2 and LNCaP when treated in Gl phase, but not in S phase. This result shows that the ginseng extract arrests the cell cycle in G1 phase, resulting in the inhibition of cell proliferation. At the same concentrations, treatment of the ginseng extract in G1 phase decreased protein kinase C activity, while the treatment in S phase had no effect. This reault suggests that protein kinase C might be involved in the inhibition of the cell cycle and proliferation of cancer cells caused by the petroleum-ether extract of ginseng.

  • PDF

Expression of the Type IV Collagenase Genes and ras Oncogene in Various Human Tumor Cell Lines

  • Moon, A-Ree;Park, Sang-Ho;Lee, Sang-Hun
    • BMB Reports
    • /
    • v.29 no.5
    • /
    • pp.484-487
    • /
    • 1996
  • The matrix metalloproteinases (MMPs) are members of a unique family of proteolytic enzymes that degrade components of the extracellular matrix. Significant evidence has accumulated to directly implicate members of the MMPs in tumor invasion and metastasis formation. To investigate the correlation between ras oncogene and MMP gene expression in various tumor cells, we detected mRNAs for the ras, MMP-2 and MMP-9 (72 kD and 92 kD type IV collagenases, respectively) genes in nine human tumor cell lines. The ras gene was expressed in seven cell lines; MMP-2 in three; MMP-9 in two cell lines tested. There was no direct correlation between the ras oncogene and MMP expression. A clear difference in the mRNA expression between MMP-2 and MMP-9 was observed among the cell lines. As an approach to study the effect of the ras oncogene on metastasis, we examined the expressions of MMP-2 and MMP-9 in HT1080 cells transfected with the v-H-ras gene. MMP-9 expression was Significantly enhanced in the ras-transfected HT1080 cells compared with the nontransfectants while ras transfection did not affect the expression of MMP-2. These results suggest the possible inducing effect of the ras oncogene on the metastasis by activation of the MMP-9 gene in HT1080.

  • PDF

Growth Inhibitory Effect of Kimchi Prepared with Four Year-Old Solar Salt and Topan Solar Salt on Cancer Cells (토판염 및 4년 숙성 천일염으로 제조한 김치의 암세포 성장 억제 효과)

  • Yoon, Hae-Hoon;Chang, Hae-Choon
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.40 no.7
    • /
    • pp.935-941
    • /
    • 2011
  • The growth inhibitory effects of kimchi prepared with solar salt were investigated. Chinese cabbages were brined with purified salt, four year-old solar salt, and Topan solar salt, and then mixed with other ingredients. The final salt concentration was adjusted to 2.2~2.4% (w/v) for each salt, and the kimchi was fermented at $7^{\circ}C$. When the acidity reached around 0.5~0.6%, the kimchi was used as a sample for further experimentation. MTT assay was used to measure the growth inhibitory effect of kimchi extracts (water, methanol) on BJ human foreskin normal cells, AGS human gastric adenocarcinoma cells, and HT-29 human colon carcinoma cells. Water extracts of all the kimchi samples showed growth inhibitory effects on cancer cells; however, there was no significant difference among the used salts. Methanol extracts of all the kimchi samples showed higher growth inhibitory effects compared to the water extracts. The methanol extracts of four year-old solar salt kimchi (AGS: 73%, HT-29: 48%) and Topan solar salt kimchi (AGS: 62%, HT-29: 46%) showed higher growth inhibitory effects than that of purified salt kimchi (AGS: 52%, HT-29: 39%). In addition, morphological changes of cancer cells (AGS, HT-29) and decreased cell numbers were observed when methanol extract of four year-old solar salt kimchi was treated to AGS and HT-29 cells. However, none of the kimchi extracts showed any growth inhibitory effect on BJ normal cells.

Heavy Metal Contents and Antioxidant Activity and Cytotoxic Effect of Red Sea Bream (Pagrus major): Comparative Studies in Domestic and Imported Red Sea Bream (Pagrus major) (국내산 및 수입산 참돔의 중금속 함량 및 항산화 활성과 세포독성 효과 비교)

  • Hwang, Seong Yeon;Bae, Jin Han;Lim, Sun-Young
    • Journal of Life Science
    • /
    • v.25 no.4
    • /
    • pp.450-455
    • /
    • 2015
  • This study compared the heavy metal contents and the effects of extracts from domestic and imported red sea bream on the antioxidant activity and cytotoxicity of human cancer cell lines. The antioxidant activity was measured using the fluorescently sensitive dye, 2’-7’ dichlorofluorescein-diacetate (DCFH-DA), and antiproliferative activity against AGS human gastric adenocarcinoma and HT-29 human colon cancer cell lines, which was determined by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. Domestic red sea bream had a higher mercury content when compared to imported red sea bream, but there was no significant difference in the lead content. Treatments with acetone/methylene chloride (A+M) and methanol (MeOH) extracts from domestic and imported red sea bream dose-dependently decreased the H2O2 induced ROS production, compared to the control. The cell viability showed that treatments with the A+M and MeOH extracts had cytotoxicity in the growth of AGS and HT-29 cancer cells. In the case of AGS, the extracts from the domestic red sea bream were higher in inhibiting cancer cell growth, compared to imported red sea bream. Our results demonstrate that the heavy metal contents of domestic and imported red sea bream were below the limit of the Food Code of Korea. The results of the biological activities indicate that the antioxidant activity of extracts from imported red sea bream was more effective, while the extracts from the domestic red sea bream were stronger in cytotoxic activity.

Endogenous Nitric Oxide Strengthens Doxorubicin-induced Apoptosis in Human Colorectal Cell Lines (Doxorubicin에 의한 내인성 산화질소가 인간 대장암 세포주에서의 세포사멸에 미치는 효과)

  • Im, Soon Jae;Kim, Ji Hye;Kim, Min Young
    • Journal of Life Science
    • /
    • v.24 no.10
    • /
    • pp.1137-1143
    • /
    • 2014
  • Doxorubicin is a general chemotherapy drug widely used for a number of cancers. However, the correlation between endogenous nitric oxide ($NO^{\bullet}$) levels and chemoresistance to doxorubicin remains unclear. In this study, we investigated the effect of endogenous $NO^{\bullet}$ on the anticancer activity of doxorubicin in human colon cancer cell lines HCT116 and HT29 with different p53 status. The cells were treated with either doxorubicin alone or in combination with the $NO^{\bullet}$ synthase (NOS) inhibitor $N^G$-monomethyl-L-arginine (NMA). Doxorubicin differentially inhibited the growth of both the HCT116 (p53-WT) and HT29 (p53-MUT) cells, which was mitigated by cotreatment with NMA. Further studies revealed that inhibition of endogenous $NO^{\bullet}$ mitigated doxorubicin-induced apoptosis in the HCT116 and HT29 cells, as evidenced by apoptotic DNA fragmentation and the sub-G1 peak of apoptotic markers. Apoptosis was delayed in the HT29 cells, and its magnitude was greatly reduced, underscoring the importance of the modulation of p53 in the response. RT-PCR analysis revealed that doxorubicin down-regulated levels of inhibitors of the apoptosis family (cellular IAP-1 and-2). Collectively, these data show that induction of apoptosis by doxorubicin in human colon cancer cells is possibly related to modulation of endogenous $NO^{\bullet}$, the expression of the IAP family of genes, and the status of p53. The underlying mechanisms may represent potential targets for adjuvant strategies to improve the efficacy of chemotherapy for colon cancer.

Cytotoxicity and Quinone Reductase Activity Stimulating Effects of Fin of Thunnus Thynnus Extracts in Various Cancer Cells (참치지느러미 추출물에 의한 암세포 독성 및 Quinone Reductase 활성 증가 효과)

  • Shin, Mi-Ok;Ku, Mi-Jeong;Bae, Song-Ja
    • Journal of Nutrition and Health
    • /
    • v.40 no.2
    • /
    • pp.147-153
    • /
    • 2007
  • In this study, we investigated the anticancer activity of the fin of Thunnus Thynnus (TT). TT was extracted with methanol (TTM), and then further fractionated into four subfractions by using solvent partition method, affording hexane (TTMH), methanol (TTMM), butanol (TTMB) and aquous (TTMA) soluble fractions. We determined the cytotoxicity of these four fractions in four kind of cancer cell lines, such as HepG2, MCF-7, B16-F10 and HT29 by MTT assay. The TTMM showed the strongest cytotoxic effect at the concentration of 150 ${\mu}g/mL$, displaying 95% on the HepG2 cell lines and 82% on MCF-7 cell line. The morphological changes such as membrane shirinking and blebbing of cells were also observed by TTMM treatment in HT29 cell. In addition, we observed that quinone reductase (QR) activity was elevated by only TTMM and TTMH treatments in HepG2 cell. QR activity was increased to around 2.0 and 1.8 times in TTMM and TTMH treated HepG2 cell at 100 ${\mu}g/mL$, respectively, compared to that in control. Although further studies are needed, the present work could suggest that the fin of TT has a potential to be usable as a chemopreventive agent against cancer.

Anti-tumor Activity of Protein-bound Polysaccharides Extracted from Mycelia of Lentinus edodes (표고버섯 균사체로부터 추출한 단백다당체의 항암효과)

  • Lee, Byung-Woo;Park, Ki-Moon
    • Korean Journal of Food Science and Technology
    • /
    • v.30 no.3
    • /
    • pp.665-671
    • /
    • 1998
  • Protein-bound polysaccharides (PBP) were extracted from the mycellia of Lentinus edodes SR-1, and their anti-tumor activities and immunopotentiating properties were observed. The amounts of PBP needed to extend the doubling time twofold (1 unit) were found to be 1 mg for mouse leukemic cells $P_{388}\;and\;L_{1210}$; 4.4, 3.6 and 6.6 for bowel cancer cells, HCT-48, HRT-18, HT-29 respectively; and 2.6 mg for liver cancer cell, Hep G2. When $P_{388}\;and\;L_{1210}$ were treated with 4 mg of PBP, more than 90% of the cell number were reduced in 48 hours. However, 9 mg of PBP and 72 hrs of incubation time were needed to obtain the same effect for HRT-18, HT-29, and Hep G2. The significant reduction of cell size was observed as the amount of PBP and the incubation time increased. Mice spleen weight and plaque forming cell number increased when the cancer cells were treated with PBP.

  • PDF

Expression of Cyclooxygenase-2 in Intestinal Epithelial Cells in Response to Invasive Bacterial Infection and its Role of Epithelial Cell Apoptosis (침습성 세균 감염에 의한 사람 장상피세포에서의 Cyclooxygenase-2 발현 및 이의 발현이 상피세포 Apoptosis에 미치는 영향)

  • Kim, Jung-Mogg;Kang, Shin-Jae;Cho, Yang-Ja
    • The Journal of the Korean Society for Microbiology
    • /
    • v.34 no.5
    • /
    • pp.479-489
    • /
    • 1999
  • Invasion of enteric bacteria, such as Salmonella and invasive E. coli, into intestinal epithelial cells induces proinflammatory gene responses and finally epithelial cell apoptosis. In this study, we asked whether invasive bacterial infection of human intestinal epithelial cells could upregulate cyclooxygenase-2 (COX-2) gene expression and whether increased COX-2 expression could influence intestinal epithelial cell apoptosis. Expression of COX-2 mRNA and prostaglandin (PG) $E_2$ production were upregulated in HT-29 colon epithelial cells which were infected with S. dublin or invasive E. coli, as examined by quantitative RT-PCR and radioimmunoassay. Inhibition of COX-2 expression and $PGE_2$ production using NS-398, a specific COX-2 inhibitor, showed a significant increase of epithelial cell apoptosis and caspase-3 activation in HT-29 cells infected with invasive bacteria. However, the addition of valerylsalicylate, a specific COX-1 inhibitor, did not change apoptosis in S. dublin-infected HT-29 cells. These results suggest that up regulated COX-2 expression and $PGE_2$ production in response to invasive bacterial infection could contribute to host defense by inhibiting apoptosis of intestinal epithelial cells.

  • PDF

Adenovirus-mediated Expression of Both Antisense Ornithine Decarboxylase and S-adenosylmethionine Decarboxylase Induces G1 Arrest in HT-29 Cells

  • Gong, Lei;Jiang, Chunying;Zhang, Bing;Hu, Haiyan;Wang, Wei;Liu, Xianxi
    • BMB Reports
    • /
    • v.39 no.6
    • /
    • pp.730-736
    • /
    • 2006
  • To evaluated the effect of recombinant adenovirus Ad-ODC-AdoMetDCas which can simultaneously express both antisense ornithine decarboxylase (ODC) and S-adenosylmethionine decarboxylase (AdoMetDC) on cell cycle distribution in colorectal cancer cell and investigated underlying regulatory responses, human colorectal cancer cells HT-29 were cultured in RPMI 1640 medium and infected with Ad-ODC-AdoMetDCas. Cell cycle progression was detected by flow cytometry analysis. The expression levels of cell cycle regulated proteins were measured by Western blot analysis. The mRNA level of cyclin D1 was measured by RT-PCR. And a luciferase reporter plasmid of cyclin D1 promoter was constructed to observe the effect of Ad-ODC-AdoMetDCas on cyclin D1 promoter activity. The results showed that recombinant adenovirus Ad-ODC-AdoMetDCas significantly induced $G_1$ arrest, decreased levels of cyclin D1 protein and mRNA and suppressed the promoter activity. Ad-ODC-AdoMetDCas also inhibited nuclear translocation of $\beta$-catenin. In conclusion, downregulation of ODC and AdoMetDC mediated by Ad-ODC-AdoMetDCas transfection induces $G_1$ arrest in HT-29 cells and the arrest was associated with suppression of cyclin D1 expression and inhibition of $\beta$-catenin nuclear translocation. As a new anticancer reagent, the recombinant adenovirus Ad-ODC-AdoMetDCas holds promising hope for the therapy of colorectal cancers.