• Title/Summary/Keyword: HSS 가새 부재

Search Result 4, Processing Time 0.021 seconds

Seismic Behavior of Concrete-Filled HSS Bracing Members Reinforced by Rib (리브 보강된 콘크리트 충전 HSS 가새부재의 이력 거동)

  • Han, Sang Whan;Yeo, Seung Min;Kim, Wook Tae
    • Journal of Korean Society of Steel Construction
    • /
    • v.17 no.1 s.74
    • /
    • pp.53-62
    • /
    • 2005
  • The purpose of this study is to improve the seismic behavior of the bracing members. Lee and Goel's (1987) concrete filling in the hollow structural section (HSS) reduced the severity of local buckling and increased the fracture life. However, concrete filling in the HSS did not prevent the occurrence of local buckling in the midsection of the bracing member, which resulted in continuous strength degradation. This study investigated the seismic behavior of the concrete-filled HSS bracing member, which is reinforced by ribs in the midsection of the bracing member. The main variable of the specimens is rib length. The test results showed that buckling mode, cyclic compression strength, and energy dissipation capacity of the bracing members were affected by rib length. Specimen reinforced with ribs with a length of 63% had better structural performance.

Fracture Prediction in Concrete-Filled Square HSS Bracing Members (콘크리트충전 각형 강관 가새부재의 파단 예측)

  • Lee, Mi-Ji;Moon, Ki-Hoon;Han, Snag-Whan
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2011.04a
    • /
    • pp.583-586
    • /
    • 2011
  • 가새골조의 정확한 내진성능평가를 위해서는 실험과 유사한 이력거동과 파단 시점을 잘 예측할 수 있는 해석적 모델이 필요하다. 가새의 이력거동을 모사히기 위해 본 연구에서는 이전 연구자들에 의해 제안된 물리적 이론 모델을 사용하였다. 또한, 가새부재의 국부좌굴에 의한 파단 예측을 위해 피로변수의 보정계수를 도입한 손상 지표를 개선하였다. 결과적으로 실험과 해석 결과를 비교하여 콘크리트충전 각형 강관가새부재의 국부좌굴 효과를 반영한 피로 보정계수를 판폭두께비에 따라 회귀분석을 통해 결정하고, 본 연구에서 제안한 해석 모델의 결과와 이전 연구의 결과를 비교하여 검증하였다.

  • PDF

Simple and Accurate Analytical Model for Predicting Cyclic Behavior of Rectangular Steel HSS Braces (간략하고 정확한 장방형 각형강관 가새부재 이력거동 예측 위한 해석모델)

  • Han, Sang Whan;Sung, Min Soo;Mah, Dongjun
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.21 no.3
    • /
    • pp.145-152
    • /
    • 2017
  • The objective of this study is to propose a simple and accurate analytical model for HSS braces. For this purpose, a physical theory model is adopted. Rectangular hollow section steel (HSS) braces are considered in this study. To accurately simulate the cyclic behavior of braces using the physical theory model, empirical equations calculating constituent parameters are implemented on the analytical model, which were proposed in the companion paper. The constituent parameters are cyclic brace growth, cyclic buckling load, and the incidence of local buckling and fracture. The analytical model proposed in this study was verified by comparing actual and simulated cyclic curves of brace specimens. It is observed that the proposed model accurately simulates the cyclic behavior of the braces throughout whole response range.

Empirical Equations Predicting Major Parameters for Simulating Cyclic Behavior of Rectangular HSS Braces (장방형 각형강관 가새부재 이력거동 예측을 위한 주요변수의 경험식 제안)

  • Han, Sang Whan;Sung, Min Soo;Mah, Dongjun
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.21 no.3
    • /
    • pp.137-144
    • /
    • 2017
  • The cyclic behavior of braces is complex due to their asymmetric properties in tension and compression. For accurately simulating the cyclic curves of braces, it is important to predict the major parameters such as cyclic brace growth, cyclic buckling load, incidence local buckling and fracture with good precision. For a given brace, the most accurate values of these parameters can be estimated throughout experiments. However, it is almost impossible to conduct experiments whenever an analytical model has to be established for many braces in building structures due to enormous cost and time. For avoid such difficulties, empirical equations for predicting constituent parameters are proposed from regression analyses based on test results of various braces. This study focuses on rectangular hollow structural section(HSS) steel braces, which have been popularly used in construction practice owing to its sectional efficiency.