• Title/Summary/Keyword: HSL

Search Result 123, Processing Time 0.027 seconds

A Simple Purification of Apoliproteins A-I and B and Their Application to Cholestery Ester Transfer Assay

  • Cho, Kyung-Hyun;Park, Myung-Sook;Bok, Song-Hae;Park, Young-Bok
    • Preventive Nutrition and Food Science
    • /
    • v.1 no.1
    • /
    • pp.87-92
    • /
    • 1996
  • This study describes a stable and simple method for the measurement of cholesteryl ester transfer protein(CETP) activities using reconstituted HDL and LDL as substrates. Apolipoproteins (apo) A-I and -B were purified from hog plasma by a new strategy without ultracentrifugation and delipidation. a simple two-step column chromatography was administered. In the first step of phenyl-sepharose CL-4B column chro-matography, hydrophobic plasma proteins were isolated. The most hydrophobic proteins bound to the column appeared to be A-I and apo-B. Contaminat proteins were efficiently eliminated from the sample by washing the column with 0.3M NaCI containing buffer after loading the plasma on the column. Two pure proteins showing each single band on SDS-PSGE of apo A-I and apo-B were individually obtained by a subsequent gel filtration column chromatography(Sephadex G-200). This two-step purification was simple and inexpensive compared to the ultracentrifugation and/or delipidation method that are most commonly used. Reconstituted hight-density lipoproteins(HDL) and low-density lipoproteins(LDL) were prepared using the purified apo A-I and-B, respectively. When these artificially prepared HDL and LDL were used in the assays for CETP as the cholesteryl ester(CE) donor and acceptor respectively, the specific transfer of CE increased up to two fold compared to that used the native HSL and LDL.

  • PDF

Identification of anti-adipogenic withanolides from the roots of Indian ginseng (Withania somnifera)

  • Lee, Seoung Rak;Lee, Bum Soo;Yu, Jae Sik;Kang, Heesun;Yoo, Min Jeong;Yi, Sang Ah;Han, Jeung-Whan;Kim, Sil;Kim, Jung Kyu;Kim, Jin-Chul;Kim, Ki Hyun
    • Journal of Ginseng Research
    • /
    • v.46 no.3
    • /
    • pp.357-366
    • /
    • 2022
  • Background: Withania somnifera (Solanaceae), generally known as Indian ginseng, is a medicinal plant that is used in Ayurvedic practice for promoting health and longevity. This study aims to identify the bioactive metabolites from Indian ginseng and elucidate their structures. Methods: Withanolides were purified by chromatographic techniques, including HPLC coupled with LC/MS. Chemical structures of isolated withanolides were clarified by analyzing the spectroscopic data from 1D and 2D NMR, and HR-ESIMS experiment. Absolute configurations of the withanolides were established by the application of NMR chemical shifts and ECD calculations. Anti-adipogenic activities of isolates were evaluated using 3T3-L1 preadipocytes with Oil Red O staining and quantitative real-time PCR (qPCR). Results: Phytochemical examination of the roots of Indian ginseng afforded to the isolation of six withanolides (1-6), including three novel withanolides, withasilolides GeI (1-3). All the six compounds inhibited adipogenesis and suppressed the enlargement of lipid droplets, compared to those of the control. Additionally, the mRNA expression levels of Fabp4 and Adipsin, the adipocyte markers decreased noticeably following treatment with 25 µM of 1-6. The active compounds (1-6) also promoted lipid metabolism by upregulating the expression of the lipolytic genes HSL and ATGL and downregulating the expression of the lipogenic gene SREBP1. Conclusion: The results of our experimental studies suggest that the withasilolides identified herein have anti-adipogenic potential and can be considered for the development of therapeutic strategies against adipogenesis in obesity. Our study also provides a mechanistic rationale for using Indian ginseng as a potential therapeutic agent against obesity and related metabolic diseases.

Anti-obesity Effect of Ethanol Extracts from Silkworm (Bombyx mori) Pupae Powder Fermented with Cordyceps militaris in the Primary Adipocytes and High Fat Diet-induced Obesity Model Mice (일차 지방세포와 고지방식이로 유발한 비만모델동물에서 Cordyceps militaris로 발효시킨 누에 (Bombyx mori) 가루 에탄올 추출물의 항비만 효과)

  • Kim, Ji Eun;Lee, Mi Rim;Choi, Jun Young;Park, Jin Ju;Kim, Hye Ryeong;Song, Bo Ram;Choi, Young Whan;Kim, Kyung Mi;Hwang, Dae Youn
    • Journal of Life Science
    • /
    • v.28 no.7
    • /
    • pp.786-794
    • /
    • 2018
  • Silkworm (Bombyx mori) pupae have been widely worked in wound dressing, hepatoprotective activity, antigenotoxicity, control of glucose level and anti-cancer activity. To investigate the anti-obesity activity of ethanol extract of silkworm pupae powder fermented with Cordyceps militaris (ESfC), the free glycerol release and cAMP concentration as well as fat accumulation were measured in the primary adipocytes of SD (Sprague Dawley) rats and high fat diet (HFD)-treated C57BL/6 mice treated with 12 weeks. Firstly, the presence of the cordycepin with lipid lowering effect was confirmed in ESfC using HPLC analysis. The level of free glycerol and cAMP concentration was significantly increased in the primary adipocytes treated with high dose of ESfC ($400{\mu}g/ml$) although these levels were consistently maintained in other dose ESfC treated groups. In HFD-induced obesity model, the increased fat weight and size of adipocytes in HFD+Vehicle treated group was recovered in HFD+ESfC treated group. Also, the liver weight and the number of lipid droplets were higher in HFD+Vehicle treated group than No treated group. But, this level was significantly decreased in HFD+ESfC treated group compared with HFD+Vehicle treated group. Furthermore, a similar recovery was detected on the phosphorylation of periliphin and HSL, and ATGL expression. Overall, the results of the present study provide some scientific evidences that ESfC can stimulate lipolysis in primary adipocytes and prevent fat accumulation in HFD-treated obesity model, and therefore have the potential for use as anti-obesity agents to treat obese patient.

Immunostimulatory and Anti-Obesity Activity of Lonicera insularis Nakai Extracts in Mouse Macrophages RAW264.7 Cells and Mouse Adipocytes 3T3-L1 Cells (섬괴불나무(Lonicera insularis Nakai) 추출물의 면역자극 및 항비만 활성)

  • Yu, Ju Hyeong;Yeo, Joo Ho;Choi, Min Yeong;Lee, Jae Won;Geum, Na Gyeong;An, Mi-Yun;Jeong, Jin Boo
    • Korean Journal of Plant Resources
    • /
    • v.35 no.4
    • /
    • pp.417-427
    • /
    • 2022
  • In this study, we investigated in vitro immuno-stimulatory and anti-obesity activity of fruit (LIF), leaves (LIL) and stems (LIS) from Lonicera insularis Nakai in mouse macrophages RAW264.7 cells and mouse pre-adipocytes 3T3-L1 cells. LIF, LIL and LIS increased the production of immunostimulatory factors such as nitric oxide (NO), inducible nitric oxide synthase (iNOS), interleukin-1β (IL-1β), cyclooxygenase-2 (COX-2), tumor necrosis factor-α (TNF-α) and activated phagocytosis in RAW264.7 cells. Inhibition of toll-like receptor 2/4 (TLR2/4) partly blocked LIF, LIL and LIS mediated production of immunostimulatory factors. In addition, inhibition of mitogen-activated protein kinases (MAPK) signaling attenuated the production of immunostimulatory factors induced by LIF, LIL and LIS. Based on these results of this study, LIF, LIL and LIS is thought to activate macrophages the production of immunostimulatory factors and phagocytosis through toll-like receptor 2/4 (TLR2/4) and MAPKs signaling pathway. In anti-obesity study, LIF reduced the lipid accumulation in 3T3-L1 cells. LIF increased the protein phosphorylation expressions such as AMP-activated protein kinase (AMPK), hormone sensitive lipase (HSL), adipose triglyceride lipase (ATGL) related to the lipolysis of the adipocytes. In addition, LIF increased the expression of proteins involved in energy metabolism and brown adipose tissues differentiation such as peroxisome proliferator-activated receptor gamma coativator 1α (PGC-1α) and PR domain-containing16 (PRDM16). These results suggest that LIF is involved in lipid accumulation inhibition through expressing the proteins such as lipolysis and differentiation of white adipocytes to brown adipocytes.

Relationships among Dietary Macronutrients, Fasting Serum Insulin, Lipid Levels and Anthropometric Measurements in Female College Students (여대생의 섭취열량 구성비와 신체 계측치, 인슐린 혈청지질 농도와의 관련성)

  • 김석영
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.29 no.6
    • /
    • pp.1090-1097
    • /
    • 2000
  • The aim of this study was to investigate the relationships among energy intakes, macronutrient intakes, macronutrient compositions, anthropometric and biochemical variables in natural environment of free-living female college students. The daily energy and macronutricnt intakes were analyzed by means of 3- week dictary records. The waist circumference and insulin level were best anthropometric and bio-chemical correlates with the energy, carbohydrate and protein intakes respectively. However, there were no relationships between waist circumference and insulin verse macronutrient compositions that macro-nutrient intakes were expressed as by the percentage of daily encrgy intakes. There were no relationships between BWI, weight, perccnt body fat and fat mass vs. energy and macronutrient intakes. However, BMI was positively related to the percentage of energy from fat and inversely related to the percentage of energy from carbohydrate in their habitual diet. Triglyceride was negatively correlated to the per-centage of energy from fat and fat intakes. Significant positive correlation was also observed bctween the percentage of energy from protein and HSL-cholcsterol.

  • PDF

Enzymatically Modified Isoquercitrin Attenuates High-Fat Diet-Induced Obesity (효소 처리된 Isoquercitrin이 고지방식이에 의해 비만이 유도된 마우스의 체중감소에 미치는 영향)

  • Min, Yeojin;Park, Taesun
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.45 no.4
    • /
    • pp.474-483
    • /
    • 2016
  • Enzymatically modified isoquercitrin (EMIQ) is a mixture of quercetin glycodsides consisting of isoquercitrin and its ${\alpha}-glucosylated$ derivatives containing one to seven additional linear glucose moieties. The aim of this study was to assess whether or not EMIQ attenuates high-fat diet (HFD)-induced body weight gain and changes in plasma indices of obesity in mice. Male C57BL/6N mice were fed chow diet, HFD, and HFD containing 1.2% EMIQ for 10 weeks. EMIQ significantly (P<0.05) reduced body weight gain (-21%), total visceral fat-pad weights (-31%), and plasma levels of triglycerides (-17%), total cholesterol (-19%), and free fatty acids (-26%) in HFD-fed mice. EMIQ significantly increased protein kinase A (PKA) expression in the epididymal adipose tissue of HFD-fed mice. Expression of adipogenesis-related genes significantly decreased, whereas expression of fatty acid oxidation-related and thermogenesis-related genes increased in epididymal adipose tissue of EMIQ-fed mice compared with HFD-fed mice. These results suggest that the protective effects of EMIQ against HFD-induced adiposity in mice appear to be associated with PKA-mediated signaling cascades involved in adipogenesis, fatty acid oxidation, and thermogenesis in adipose tissue.

Study on the Behavior of Curved Track in Honam High-Speed Line considering the Running Performanace for HEMU 430-X (HEMU 430-X 주행특성을 고려한 호남고속철도 곡선궤도구조의 거동연구)

  • Kang, Yun-Suk;Um, Ki-Young;Kim, Seog-Won
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.8
    • /
    • pp.4068-4076
    • /
    • 2013
  • The wheel-rail interaction forces are influenced by the velocity of vehicle, wheel load, alignment (curve radius, cant etc). For the safety of track structure, it is required to evaluate the influences for track and influential factors. Recently, the HEMU 430-X, which was developed by Next Generation High-Speed Rail Development R&D Project, achieved 421.4km/h in a test run of Daegu.Busan section of the Gyeongbu high speed rail on March in 2013. In the case of additional speed-up test on Test-Bed Section(Gongju.Jeongeup: KP 100~128km Osong starting point), the analysis of track forces is required for outer rail by the increase of dynamic force and centrifugal force of vehicle. In this paper, the vehicle speed variation on HSL line is evaluated by TPS analysis considering the tractive effort of HEMU 430-X, tested running resistance and alignment of Honam HSR. And the track forces are evaluated by centrifugal force and impact factor on curved track.

Minority report; Diketopiperazines and Pyocyanin as Quorum Sensing Signals in Pseudomonas aeruginosa (Minority report; Pseudomonas aeruginosa의 정족수 인식(쿼럼 센싱) 신호물질로써의 Diketopiperazines과 Pyocyanin)

  • Lee, Joon-Hee
    • Korean Journal of Microbiology
    • /
    • v.44 no.2
    • /
    • pp.85-92
    • /
    • 2008
  • Pseudomonas aeruginosa is an opportunistic human pathogen, causing a wide variety of infections including cystic fibrosis, microbial keratitis, and burn wound infections. The cell-to-cell signaling mechanism known as quorum sensing (QS) plays a key role in these infections and the QS systems of P. aeruginosa have been most intensively studied. While many literatures that introduce the QS systems of P. aeruginosa have mostly focused on two major acyl-homo serine lactone (acyl-HSL) QS signals, N-3-oxododecanoyl homoserine lactone (3OC12) and N-butanoyl homoserine lactone (C4), several new signal molecules have been discovered and suggested for their significant roles in signaling and virulence of P. aeruginosa. One of them is PQS (Pseudomonas quinolone signal; 2-heptyl-3-hydroxy-4-quinolone), which is now considered as a well-characterized major signal meolecule of P. aeruginosa. In addition, recent researches have also suggested some more putative signal molecules of P. aeruginosa, which are diketopiperazines (DKPs) and pyocyanin. DKPs are cyclic dipeptides and structurally diverse depending on what amino acids are involved in composition. Some DKPs from the culture supernatant of P. aeruginosa are suggested as new diffusible signal molecules, based on their ability to activate Vibrio fischeri LuxR biosensors that are previously considered specific for acyl-HSLs. Pyocyanin (1-hydroxy-5-methyl-phenazine), one of phenazine derivatives produced by P. aeruginosa is a characteristic blue-green pigment and redox-active compound. This has been recently suggested as a terminal signaling factor to upregulate some QS-controlled genes during stationary phase under the mediation of a transcription factor, SoxR. Here, details about these newly emerging signaling molecules of P. aeruginosa are discussed.

Inhibition of Differentiation and Anti-Adipogenetic Effect of the Salvia plebeia R. Br. Ethanol Extract in Murine Adipocytes, 3T3-L1 Cells (배암차즈기 에탄올 추출물의 3T3-L1 지방전구세포 분화 억제 및 지방 축적 저해 효과)

  • Kim, Sung-Ok;Kim, Mi-Ryeo;Hwang, Kyung-A;Park, No-Jin;Jeong, Ji-Suk
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.46 no.4
    • /
    • pp.401-408
    • /
    • 2017
  • Salvia plebeia R. Br. (Lamiaceae) has been used in folk medicines in Asian countries, including Korea and China, to treat inflammatory diseases. The focus of our research was on the anti-adipogenic activity of ethanol extract from Salvia plebeia R. Br. (SPE) in 3T3-L1 adipocytes. This study investigated inhibition of differentiation and lipogenesis upon SPE treatment in 3T3-L1 cells. The results reveal that SPE at non-cytotoxic concentration significantly suppressed triglyceride accumulation and reduced expression of peroxisome proliferator-activated receptor gamma, CCAAT/enhancer-binding protein-alpha, and sterol regulatory element-binding protein as adipogenic transcription factors in 3T3-L1 adipocytes compared to non-treated control cells. Inducible phosphorylation of AMP-activated protein kinase, acetyl CoA carboxylase, and hormone-sensitive lipase as well as carnitine palmitoyltransferase-1 mRNA expression increased upon SPE treatment, which suppressed expression of fatty acid synthase. In conclusion, these results demonstrate that SPE can inhibit expression of adipogenic genes in 3T3-L1 adipocytes. Our study suggests that SPE has potential anti-obesity effects and is a novel therapeutic functional agent with anti-adipogenic activity via reduction of lipogenesis.

Effects of Sinetrol-XPur on Leptin-Deficient Obese Mice and Activation of cAMP-Dependent UCP-2 (Leptin 유전자 결핍 동물모델을 이용한 시네트롤(Sinetrol-XPur)의 항비만 효과와 cAMP를 통한 UCP-2 활성화 기전 연구)

  • Yoo, Jae Myeong;Lee, Minhee;Kwon, Han Ol;Choi, Sei Gyu;Bae, Mun Hyoung;Kim, Ok-Kyung
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.45 no.4
    • /
    • pp.484-491
    • /
    • 2016
  • The present study investigated the effect of Sinetrol-XPur (polyphenolic Citrus spp. and Paullinia cupana Kunth dry extract) and defined the action mode for cyclic adenosine monophosphate (cAMP)-dependent uncoupling protein (UCP)-2 activation. Leptin-deficient obese mice were treated with two different doses, 100 mg/kg body weight (BW) and 300 mg/kg BW of each AIN93G supplement, for 7 weeks. Treatment of obese mice with both low and high doses of Sinetrol-XPur significantly reduced body weight gain compared to control obese mice. White adipose tissue weight of mice was reduced by 30.96% in high dose-supplemented groups. Serum total cholesterol and triglyceride were reduced by a high dose of Sinetrol-XPur by 20.02% and 30.96%, respectively. Serum level of high density lipoprotein (HDL) was significantly increased by treatment with both doses, as the ratio of HDL to low density lipoprotein increased by 138.78% and 171.49%, respectively. Regarding expression of biochemical factors related to lipid metabolism, fatty acid synthase significantly decreased and UCP-2 increased upon treatment with a high dose of Sinetrol-XPur, but there was no significant difference in lipoprotein lipase and hormone-sensitive lipase. To define cellular mechanism, intracellular cAMP levels in 3T3-L1 adipocytes significantly increased in a dose-dependent manner over the range of $50{\sim}250{\mu}m/mL$. The phosphodiesterase (PDE) inhibitor 3-isobutyl-1-methylxanthine clearly blocked cAMP, suggesting that Sinetrol-XPur promotes lipolysis of adipocytes through inhibition of cAMP-dependent PDE, resulting in induction of cAMP response element binding protein and UCP-2. These results suggest that Sinetrol-XPur supplementation is a viable option for reducing body weight and fat by improving serum lipid profiles and genetic expression of lipid metabolic factors, especially activation of cAMP-dependent UCP-2.