• Title/Summary/Keyword: HSI Color Model

Search Result 82, Processing Time 0.032 seconds

A Study on Color Information Recognition with Improved Fuzzy Inference Rules (개선된 퍼지 추론 규칙을 이용한 색채 정보 인식에 관한 연구)

  • Woo, Seung-Beom;Kim, Kwang-Baek
    • Proceedings of the Korea Contents Association Conference
    • /
    • 2009.05a
    • /
    • pp.105-111
    • /
    • 2009
  • Widely used color information recognition methods based on the RGB color model with static fuzzy inference rules have limitations due to the model itself - the detachment of human vision and applicability of limited environment. In this paper, we propose a method that is based on HSI model with new inference process that resembles human vision recognition process. Also, a user can add, delete, update the inference rules in this system. In our method, we design membership intervals with sine, cosine function in H channel and with functions in trigonometric style in S and I channel. The membership degree is computed via interval merging process. Then, the inference rules are applied to the result in order to infer the color information. Our method is proven to be more intuitive and efficient compared with RGB model in experiment.

  • PDF

A development of a new tongue diagnosis model in the oriental medicine by the color analysis of tongue (혀의 색상 분석에 의한 새로운 한방 설진(舌診) 모델 개발)

  • Choi, Min;Lee, Min-taek;Lee, Kyu-won
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2013.05a
    • /
    • pp.801-804
    • /
    • 2013
  • We propose a new tongue examination model according to the taste division of tongue. The proposed sytem consists of image acquisition, region segmentation, color distribution analysis and abnormality decision of tongue. Tongue DB which is classified into abnormality is constructed with tongue images captured from oriental medicine hospital inpatients. We divided 4 basic taste(bitter, sweet, salty and sour) regions and performed color distribution analysis targeting each region under HSI(Hue Saturation Intensity) color model. To minimize the influence of illumination, the histograms of H and S components only except I are utilized. The abnormality of taste regions each by comparing the proposed diagnosis model with diagnosis results by a doctor of oriental medicine. We confirmed the 87.5% of classification results of abnormality by proposed algorithm is coincide with the doctor's results.

  • PDF

Automatic Extraction of Component Window for Auto-Teaching of PCB Assembly Inspection Machines (PCB 조립검사기의 자동티칭을 위한 부품윈도우 자동추출 방법)

  • Kim, Jun-Oh;Park, Tae-Hyoung
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.16 no.11
    • /
    • pp.1089-1095
    • /
    • 2010
  • We propose an image segmentation method for auto-teaching system of PCB (Printed Circuit Board) assembly inspection machines. The inspection machine acquires images of all components in PCB, and then compares each image with its standard image to find the assembly errors such as misalignment, inverse polarity, and tombstone. The component window that is the area of component to be acquired by camera, is one of the teaching data for operating the inspection machines. To reduce the teaching time of the machine, we newly develop the image processing method to extract the component window automatically from the image of PCB. The proposed method segments the component window by excluding the soldering parts as well as board background. We binarize the input image by use of HSI color model because it is difficult to discriminate the RGB colors between components and backgrounds. The linear combination of the binarized images then enhances the component window from the background. By use of the horizontal and vertical projection of histogram, we finally obtain the component widow. The experimental results are presented to verify the usefulness of the proposed method.

Shadow Region Detection Using Color Properties (컬러 특성을 이용한 그림자 영역 검출)

  • Hwang Dong-Kuk;Choi Dong-Jin;Lee Woo-Ram;Park Hee-Jung;Jun Byung-Min;Lee Sang-Ju
    • The Journal of the Korea Contents Association
    • /
    • v.5 no.4
    • /
    • pp.103-110
    • /
    • 2005
  • In this paper, we present a shadow detection algorithm using the shadow features which appear in color images. Shadow regions have lower luminance and saturation than those of nearby regions, and is generally shown as dark colors. The regions are detected by means of analysing and applying their properties to images represented as the HSI color model. The proposed algorithm is consisted of two steps: at the first step, the candidate regions of shadow are found with using shadow features, and then, real shadow regions are detected only in candidate regions by using their information to reduce real objects and dark marks. The experimental results show that the algorithm is effective.

  • PDF

Tongue Image Segmentation via Thresholding and Gray Projection

  • Liu, Weixia;Hu, Jinmei;Li, Zuoyong;Zhang, Zuchang;Ma, Zhongli;Zhang, Daoqiang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.2
    • /
    • pp.945-961
    • /
    • 2019
  • Tongue diagnosis is one of the most important diagnostic methods in Traditional Chinese Medicine (TCM). Tongue image segmentation aims to extract the image object (i.e., tongue body), which plays a key role in the process of manufacturing an automated tongue diagnosis system. It is still challenging, because there exists the personal diversity in tongue appearances such as size, shape, and color. This paper proposes an innovative segmentation method that uses image thresholding, gray projection and active contour model (ACM). Specifically, an initial object region is first extracted by performing image thresholding in HSI (i.e., Hue Saturation Intensity) color space, and subsequent morphological operations. Then, a gray projection technique is used to determine the upper bound of the tongue body root for refining the initial object region. Finally, the contour of the refined object region is smoothed by ACM. Experimental results on a dataset composed of 100 color tongue images showed that the proposed method obtained more accurate segmentation results than other available state-of-the-art methods.

Perceptual Color Difference based Image Quality Assessment Method and Evaluation System according to the Types of Distortion (인지적 색 차이 기반의 이미지 품질 평가 기법 및 왜곡 종류에 따른 평가 시스템 제안)

  • Lee, Jee-Yong;Kim, Young-Jin
    • Journal of KIISE
    • /
    • v.42 no.10
    • /
    • pp.1294-1302
    • /
    • 2015
  • A lot of image quality assessment metrics that can precisely reflect the human visual system (HVS) have previously been researched. The Structural SIMilarity (SSIM) index is a remarkable HVS-aware metric that utilizes structural information, since the HVS is sensitive to the overall structure of an image. However, SSIM fails to deal with color difference in terms of the HVS. In order to solve this problem, the Structural and Hue SIMilarity (SHSIM) index has been selected with the Hue, Saturation, Intensity (HSI) model as a color space, but it cannot reflect the HVS-aware color difference between two color images. In this paper, we propose a new image quality assessment method for a color image by using a CIE Lab color space. In addition, by using a support vector machine (SVM) classifier, we also propose an optimization system for applying optimal metric according to the types of distortion. To evaluate the proposed index, a LIVE database, which is the most well-known in the area of image quality assessment, is employed and four criteria are used. Experimental results show that the proposed index is more consistent with the other methods.

Recognition of Car Plate using Gray Brightness Variation, HSI Information and Enhanced ART2 Algorithm (명암도 변화 및 HSI 정보와 개선된 ART2 알고리즘을 이용한 차량 번호판 인식)

  • 김광백;김영주
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.11 no.5
    • /
    • pp.379-387
    • /
    • 2001
  • We proposed an enhanced extraction method of vehicle plate, in which both the brightness variation of gray and the Hue value of HSI color model were used. For the extraction of the vehicle plate from a vehicle image, first of all, candidate regions for the vehicle plate were extracted from the image by using the property of brightness variation of the image. A real place region was determined among candidate regions by the density of pixels with the Hue value of green and white. For- extracting the feature area containing characters from the extracted vehicle plate, we used the histogram-based approach of individual characters. And we proposed and applied for the recognition of characters the enhanced ART2 algorithm which support the dynamical establishment of the vigilance threshold with the genera]iced union operator of Yager. In addition, we propose an enhanced SOSL algorithm which is integrated both enhanced ART2 and supervised learning methods. The performance evaluation was performed using 100's real vehicle images and the evaluation results demonstrated that the extraction rates of tole proposed extraction method were improved, compared with that of previous methods based un brightness variation, RGB and HSI individually . Furthermore, the recognition rates of the proposed algorithms were improved much more than that of the conventional ART2 and BP algorithms.

  • PDF

Color Image Segmentation Based on Edge Salience Map and Region Merging (경계 중요도 맵 및 영역 병합에 기반한 칼라 영상 분할)

  • Kim, Sung-Young
    • Journal of the Korea Society of Computer and Information
    • /
    • v.12 no.3
    • /
    • pp.105-113
    • /
    • 2007
  • In this paper, an image segmentation method which is based on edge salience map and region merging is presented. The edge salience map is calculated by combining a texture edge map with a color edge map. The texture edge map is computed over multiple spatial orientations and frequencies by using Gabor filter. A color edge is computed over the H component of the HSI color model. Then the Watershed transformation technique is applied to the edge salience map to and homogeneous regions where the dissimilarity of color and texture distribution is relatively low. The Watershed transformation tends to over-segment images. To merge the over-segmented regions, first of all, morphological operation is applied to the edge salience map to enhance a contrast of it and also to find mark regions. Then the region characteristics, a Gabor texture vector and a mean color, in the segmented regions is defined and regions that have the similar characteristics, are merged. Experimental results have demonstrated the superiority in segmentation results for various images.

  • PDF

Fuzzy Model-Based Emotion Recognition Using Color Image (퍼지 모델을 기반으로 한 컬러 영상에서의 감성 인식)

  • Joo, Young-Hoon;Jeong, Keun-Ho
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.14 no.3
    • /
    • pp.330-335
    • /
    • 2004
  • In this paper, we propose the technique for recognizing the human emotion by using the color image. To do so, we first extract the skin color region from the color image by using HSI model. Second, we extract the face region from the color image by using Eigenface technique. Third, we find the man's feature points(eyebrows, eye, nose, mouse) from the face image and make the fuzzy model for recognizing the human emotions (surprise, anger, happiness, sadness) from the structural correlation of man's feature points. And then, we infer the human emotion from the fuzzy model. Finally, we have proven the effectiveness of the proposed method through the experimentation.

Research of the Face Extract Algorithm from Road Side Images Obtained by vehicle (차량에서 획득된 도로 주변 영상에서의 얼굴 추출 방안 연구)

  • Rhee, Soo-Ahm;Kim, Tae-Jung;Kim, Moon-Gie;Yun, Duk-Geun;Sung, Jung-Gon
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.16 no.1
    • /
    • pp.49-55
    • /
    • 2008
  • The face extraction is very important to provide the images of the roads and road sides without the problem of privacy. For face extraction form roadside images, we detected the skin color area by using HSI and YCrCb color models. Efficient skin color detection was achieved by using these two models. We used a connectivity and intensity difference for grouping, skin color regions further we applied shape conditions (rate, area, number and oval condition) and determined face candidate regions. We applied thresholds to region, and determined the region as the face if black part was over 5% of the whole regions. As the result of the experiment 28 faces has been extracted among 38 faces had problem of privacy. The reasons which the face was not extracted were the effect of shadow of the face, and the background objects. Also objects with the color similar to the face were falsely extracted. For improvement, we need to adjust the threshold.

  • PDF