• 제목/요약/키워드: HSE cells

검색결과 8건 처리시간 0.046초

Shikonin Induced Apoptosis and Inhibited Angiogenesis on HSE Cells

  • Lee Soo-Jin;Kim Sung-Hoon
    • 동의생리병리학회지
    • /
    • 제19권5호
    • /
    • pp.1363-1369
    • /
    • 2005
  • Previously we have shown that shikonin has strong anti-tumor activities via inducing apoptosis and suppressing metastasis on LLC cells in vivo and in vitro. Here we have investigated anti-angiogenic potential of shikonin and its possible mechanism of action in HSE cells. Shikonin inhibited the proliferation of HSE cells in a concentration-dependent manner. It was shown that this proliferation inhibition was caused by apoptosis induced by shikonin via BrdU incorporation and Western blotting analysis. Shikonin treatment was caused that decrease of activation of caspases and cleavage of PARP. And shikonin induced that the activation of mitogen-activated protein kinases (MAPKs), such as extracellular signal-regulated kinase (ERK), c-Jun N-terminal kinase (JNK) and p38. Moreover, shikonin showed anti-angiogenic activities inhibiting tube-like formation of HSE cells in vitro and vascular formation of LLC cells in vivo. These findings suggest that shikonin may a possible candidate not only anti-metastatic agent but also anti-angiogenic agent.

Involvement of Putative Heat Shock Element in Transcriptional Regulation of $p21^{WAF1/ClP1/SDl1}$ by Heat Shock

  • Woo, Sang-Hyeok;Oh, Su-Young;Han, Song-Iy;Choi, Yung-Hyun;Kang, Kwang-Il;Yoo, Mi-Ae;Kim, Han-Do;Kang, Ho-Sung
    • Animal cells and systems
    • /
    • 제4권2호
    • /
    • pp.181-186
    • /
    • 2000
  • The expression of $p21^{WAF1/ClP1/SDl1}$, one of the cyclin-dependent kinase inhibitors, is regulated by a variety of transcription factors including p53 and STAT. Heat shock induces the expression of p21 in a temperature- and time-dependent manner. Although the p21 induction by heat shock has been reported to be controlled by p53, a p53-independent mechanism Is also involved. To understand the p53-independent regulation of heat shock-induced p21 expression, we searched the promoter region of p21 gene and found one or two heat shock element (HSE)-like sequences in human, rat, and mouse. Electromobility shift assay (EMSA) showed that heat shock factor (HSF) could bind to these HSE-like sequences In response to heat shock, even though to a lesser extent than to HSE. In addition, p21 promoter deletion analysis revealed that heat shock activated a p21 deletion promoter construct containing the HSE-like sequences but lacking p53-binding sites, but not a promoter construct containing neither HSE-like sequences nor the p53-responsive element. Furthermore, the p21 induction by heat shook was significantly inhibited in confluent cells in which heat shock-induced HSF activation was reduced. These results suggest that the transcriptional regulation of p21 by heat shock may be mediated through activation and binding to HSE-like sequences of HSF.

  • PDF

In vivo anti-metastatic action of Ginseng Saponins is based on their intestinal bacterial metabolites after oral administration

  • Saiki, Ikuo
    • Journal of Ginseng Research
    • /
    • 제31권1호
    • /
    • pp.1-13
    • /
    • 2007
  • We found that the main bacterial metabolite M1 is an active component of orally administered protopanxadiol-type ginsenosides, and that the anti-metastatic effect by oral administration of ginsenosides may be primarily mediated through the inhibition of tumor invasion, migration and growth of tumor cells by their metabolite M1. Pharmacokinetic study after oral administration of ginsenoside Rb1 revealed that M1 was detected in serum for 24 h by HPLC analysis but Rb1 was not detected. M1, with anti-metastatic property, inhibited the proliferation of murine and human tumor cells in a time- and concentration-dependent manner in vitro, and also induced apoptotic cell death (the ladder fragmentation of the extracted DNA). The induction of apoptosis by M1 involved the up-regulation of the cyclin-dependent kinase(CDK) inhibitor $p27^{Kip1}$ as well as the down-regulation of a proto-oncogene product c-Myc and cyclin D1 in a time-dependent manner. Thus, M1 might cause the cell-cycle arrest (G1 phase arrest) in honor cells through the up/down-regulation of these cell-growth related molecules, and consequently induce apoptosis. The nucleosomal distribution of fluorescence-labeled M1 suggests that the modification of these molecules is induced by transcriptional regulation. Tumor-induced angiogenesis (neovascularization) is one of the most important events concerning tumor growth and metastasis. Neovascularization toward and into tumor is a crucial step for the delivery of nutrition and oxygen to tumors, and also functions as the metastatic pathway to distant organs. M1 inhibited the tube-like formation of hepatic sinusoidal endothelial (HSE) cells induced by the conditioned medium of colon 26-L5 cells in a concentration-dependent manner. However, M1 at the concentrations used in this study did not affect the growth of HSE cells in vitro.

Overexpressed Drosophila DNA Methyltransferase 2 Isoform C Interacts with Hsp70 in Vivo

  • Roder, Karim
    • BMB Reports
    • /
    • 제40권4호
    • /
    • pp.554-561
    • /
    • 2007
  • Shen and colleagues (Lin et al., 2004) have recently shown that overexpression of the Drosophila DNA methyltransferase 2 isoform C, dDnmt2c, extended life span of fruit flies, probably due to increased expression of small heat shock proteins such as Hsp22 or Hsp26. Here, I demonstrate with immunoprecipitations that overexpressed dDnmt2c interacts with endogenous Hsp70 protein in vivo in S2 cells. However, its C-terminal half, dDnmt2c(178-345) forms approximately 10-fold more Hsp70-containing protein complexe than wild-type dDnmt2c. Overexpressed dDnmt2c(178-345) but not the full length dDnmt2c is able to increase endogenous mRNA levels of the small heat shock proteins, Hsp26 and Hsp22. I provide evidence that dDnmt2c(178-345) increases Hsp26 promoter activity via two heat shock elements, HSE6 and HSE7. Simultaneously overexpressed Hsp40 or a dominant negative form of heat shock factor abrogates the dDnmt2c(178-345)-dependent increase in Hsp26 transcription. The data support a model in which the activation of heat shock factor normally found as an inactive monomer bound to chaperones is linked to the overexpressed C-terminus of dDnmt2c. Despite the differences observed in flies and S2 cells, these findings provide a possible explanation for the extended lifespan in dDnmt2c-overexpressing flies with increased levels of small heat shock proteins.

Putative response regulator two-component gene, CaSKN7, regulate differentiation and virulence in Candida albicans

  • Lee, Jung-Shin;Minyoung Lim;Yim, Hyung-Soon;Kang, Sa-Ouk
    • 한국생물물리학회:학술대회논문집
    • /
    • 한국생물물리학회 2003년도 정기총회 및 학술발표회
    • /
    • pp.50-50
    • /
    • 2003
  • We have identified and analysed a putative response regulator two-component gene (CaSKN7) from Candida albicans and its encoding protein (CaSkn7). CaSKN7 has an open reading frame of 1677bp. CaSKN7 encodes a 559 amino acid protein (CaSkn7) with an estimated molecular mass of 61.1 kDa. CaSKN7 is a homologue of a Saccharomyces cerevisiae SKN7 that is the regulator involved in the oxidative stress response. To study the role of CaSKN7, we constructed a CAI4-derived mutant strain carrying a homozygous deletion of the CaSKN7 gene. In the caskn7 disruptant cells, the formation of germ tube require shorter time than that in the congenic wild-type strain but the growth of mycelium delayed in liquid media. In contrast, the caskn7 disruptant cells attenuate the differentiation in solid media and the virulence in mouse model system. Expression level of hypha-specific and virulence genes - HYR1, ECE1, HWP1, and ALS1 - in the caskn7 disruptant cells increased as compared with that in the congenic wild-type strain in 10% serum YPD. Skn7 in 5. cerevisiae was found to bind the HSE element from the SSA promoter, Also, CaSkn7 contains heat shock factor DNA-binding domain and the promoters of these genes have HSE-like sties. Therefore these results show that CaSKN7 regulate the differentiation and virulence of C. albicans.

  • PDF

Protective Effect of Selenium on Experimental Colon Carcinogenesis in Mice Fed a Low Iron Diet

  • Park, Hyun-Ji;Kim, Jun-Hyeong;Kang, Bong-Su;Nam, Sang-Yoon;Kim, Jong-Soo;Jeong, Jae-Hwang;Kim, Eun-Young;Lee, Beom-Jun;Yun, Young-Won
    • 한국식품위생안전성학회지
    • /
    • 제26권4호
    • /
    • pp.388-397
    • /
    • 2011
  • Selenium (Se) is known to prevent from several cancers, while iron (Fe) is known to be associated with high risk of cancers. The role of Se on colon carcinogenesis was investigated in an animal model induced by azoxymethane (AOM) and dextran sodium sulfate (DSS) in low Fe mice. Six-week old ICR mice fed on a low Fe diet (4.5 ppm Fe; generally 10 times lower than normal Fe) with three different Se (0.02, 0.1 or 0.5 ppm) levels for 24 weeks. The animals received weekly three ($0{\sim}2^{nd}$ weeks) i.p. injections of AOM (10 mg/kg RW), followed by 2% DSS with drinking water for 1 week to induce the colon cancer. There were five experimental groups including vehicle, positive control (normal Fe level, AOM/DSS), Low Fe (LFe) + AOM/DSS+Low Se (LSe), LFe + AOM/DSS + medium Se (MSe) and LFe + AOM/DSS + high Se (HSe) groups. HSe group showed a 66.7% colonic tumor incidence, MSe group showed a 69.2% tumor incidence, and LSe group showed a 80.0% tumor incidence. The tumor incidence was negatively associated with Se levels of diets. Tumor multiplicity in Hse group was significantly low compared to the other groups (p < 0.05). With increasing Se levels of diets, the primary anti-proliferating cell nuclear antigen (PCNA)-positive cells were decreased and apoptotic bodies were increased in a dose-dependent manner. Se-dependent glutathione peroxidase activity and its protein level were dependent on the levels of Se of diets. Malondialdehyde level in liver was lowest in Hse group among experimental groups. These findings indicate that dietary Se is chemopreventive for colon cancer by increasing antioxidant activity and decreasing cell proliferation in Fe-deficient mice.

Stress Responses through Heat Shock Transcription Factor in S. cerevisiae

  • Hahn, Ji-Sook;Hu, Zhanzhi;Thiele, Dennis J.;Lyer, Vishwanath R.
    • 한국미생물학회:학술대회논문집
    • /
    • 한국미생물학회 2005년도 International Meeting of the Microbiological Society of Korea
    • /
    • pp.105-109
    • /
    • 2005
  • Heat Shock Transcription Factor (HSF), and the promoter heat Shock Element (HSE), are among the most highly conserved transcriptional regulatory elements in nature. HSF mediates the transcriptional response of eukaryotic cells to heat, infection and inflammation, pharmacological agents, and other stresses. While HSF is essential for cell viability in yeast, oogenesis and early development in Drosophila, extended life-span in C. elegans, and extra-embryonic development and stress resistance in mammals, little is known about its full range of biological target genes. We used whole genome analyses to identify virtually all of the direct transcriptional targets of yeast HSF, representing nearly three percent of the genomic loci. The majority of the identified loci are heat-inducibly bound by yeast HSF, and the target genes encode proteins that have a broad range of biological functions including protein folding and degradation, energy generation, protein secretion, maintenance of cell integrity, small molecule transport, cell signaling, and transcription. Approximately 30% of the HSF direct target genes are also induced by the diauxic shift, in which glucose levels begin to be depleted. We demonstrate that phosphorylation of HSF by Snf1 kinase is responsible for expression of a subset of HSF targets upon glucose starvation.

  • PDF

세포신호계에 있어서 Protein Kinase C: 사람의 전입선 adenocarcinoma PC-3 세포내의 여섯개의 Protein kinase C 동립효소의 translocation (Protein Kinase C (PKC) in Cellular Signalling System: Translocation of Six Protein Kinase C Isozymes in Human Prostate Adenocarcinoma PC-3 Cell Line)

  • Park, Won-Chul;Ahn, Chang-Ho
    • 한국동물학회지
    • /
    • 제36권4호
    • /
    • pp.439-451
    • /
    • 1993
  • Protein kinase C isozymes in a human prostate adenocarcinoma PC-3 cell line were characterized. Immunoreactive bands and immunocytochemical stains were obsenred in PC-3 cells with antibodies raised against protein kinase C ${\alpha}$, ${\beta}$, ${\gamma}$, $\delta$, $\varepsilon$, and ζ types, respectively. Protein kinase C ${\alpha}$ corresponded to a immunoreactive band at a molecular weight of 80,000-dalton, whereas molecular weights of other immunoreactive isozvmes of protein kinase C were detected at 68,000-dalton. Protein kinHse C $\delta$ and ζ antibodies detected additional bands at 55,000-dalton and 80,000-dalton, respectively Immunocvtochemical study confirmed the results of the immunoblotting experiments qualitatively: all six protein kinase C isozymes were detected in the cytoplasm of PC-3 cells. Translocation of protein kinase C in PC-3 cells were also examined with phorbol 12-myristate 13-acetate (PMA), bryostatin 2, diolein, and 1-oleoyl-2-acetyl glycerol (OAG). Differential reactions of protein kinase C isozvmes to these activators were obsenred. When PC-3 cells were treated with 10mM bryostatin 2, protein kinase C isozyme u was translocated into the nucleus, whereas s type was translocated into the plasma membrane and the nucleus. Protein kinase C ${\alpha}$ and ζ types were translocated into the nucleus following the treatment with 101M diolein, whereas protein kinase C ${\alpha}$, ${\beta}$, ${\gamma}$, and $\varepsilon$ types were translocated into the nucleus by the treatment with 10mM OAG. Protein kinase C ${\alpha}$ and $\varepsilon$ types were translocated into the nucleus in the presence of 100nM PMA. Protein kinase C $\delta$ type was translocated to the nuclear membrane by these activators, however, only PMA-induced translocation was inhibited by protein kinase C inhibitor, 1-(5-isoquinolinesulfonyll-2-methvlpiperazine dihvdrochloride (H7) . H7 inhibited translocation of protein kinase C ${\alpha}$ type induced by PMA, ${\beta}$ type by OAG and s type by PMA and OAG, whereas it did not affect translocations induced by bryostatin and diolein, respectively. These results suggest that there exist six isoformes of protein kinase C (${\alpha}$, ${\beta}$, ${\gamma}$, $\delta$, $\varepsilon$ and ζ types) in PC-3 cells and that each of these isozvmes distinctivelv reacts to bryostatin, diolein, OAG and PMA, in part due to an altered molecular size and conceivably discrete binding site(s).

  • PDF