• Title/Summary/Keyword: HSC transplantation (HSCT)

Search Result 2, Processing Time 0.015 seconds

Challenges and innovations in hematopoietic stem cell transplantation: exploring bone marrow niches and new model systems

  • Byung-Chul Lee
    • BMB Reports
    • /
    • v.57 no.8
    • /
    • pp.352-362
    • /
    • 2024
  • Hematopoietic stem cell transplantation (HSCT) remains an indispensable therapeutic strategy for various hematological diseases. This review discusses the pivotal role of bone marrow (BM) niches in influencing the efficacy of HSCT and evaluates the current animal models, emphasizing their limitations and the need for alternative models. Traditional animal models, mainly murine xenograft, have provided significant insights, but due to species-specific differences, are often constrained from accurately mimicking human physiological responses. These limitations highlight the importance of developing alternative models that can more realistically replicate human hematopoiesis. Emerging models that include BM organoids and BM-on-a-chip microfluidic systems promise enhanced understanding of HSCT dynamics. These models aim to provide more accurate simulations of the human BM microenvironment, potentially leading to improved preclinical assessments and therapeutic outcomes. This review highlights the complexities of the BM niche, discusses the limitations of current models, and suggests directions for future research using advanced model systems.

Inhibition of Graft Versus Host Disease Using CD4+CD25+ T Cells Induced with Interleukin-2 in Mismatched Allogeneic Murine Hematopoietic Stem Cell Transplantation (주조직적합항원이 불일치하는 마우스 동종 조혈모세포이식에서 IL-2로 유도된 CD4+CD25+ T세포를 이용한 이식편대숙주병의 억제)

  • Hyun, Jae Ho;Jeong, Dae Chul;Chung, Nak Gyun;Park, Soo Jeong;Min, Woo Sung;Kim, Tai Gyu;Choi, Byung Ock;Kim, Won Il;Han, Chi Wha;Kim, Hack Ki
    • IMMUNE NETWORK
    • /
    • v.3 no.4
    • /
    • pp.287-294
    • /
    • 2003
  • Background: In kidney transplantation, donor specific transfusion may induce tolerance as a result of some immune regulatory cells against the graft. In organ transplantation, the immune state arises from a relationship between the immunocompromised graft and the immunocompetent host. However, a reverse immunological situation exists between the graft and the host in hematopoietic stem cell transplantation (HSCT). In addition, early IL-2 injections after an allogeneic murine HSCT have been shown to prevent lethal graft versus host disease (GVHD) due to CD4+ cells. We investigated the induction of the regulatory CD4+CD25+ cells after a transfusion of irradiated recipient cells with IL-2 into a donor. Methods: The splenocytes (SP) were obtained from 6 week-old BALB/c mice ($H-2^d$) and irradiated as a single cell suspension. The donor mice (C3H/He, $H-2^k$) received $5{\times}10^6$ irradiated SP, and 5,000 IU IL-2 injected intraperitoneally on the day prior to HSCT. The CD4+CD25+ cell populations in SP treated C3H/He were analyzed. In order to determine the in vivo effect of CD4+CD25+ cells, the lethally irradiated BALB/c were transplanted with $1{\times}10^7$ donor BM and $5{\times}10^6$ CD4+CD25+ cells. The other recipient mice received either $1{\times}10^7$ donor BM with $5{\times}10^6$ CD4+ CD25- cells or the untreated SP. The survival and GVHD was assessed daily by a clinical scoring system. Results: In the MLR assay, BALB/c SP was used as a stimulator with C3H/He SP, as a responder, with or without treatment. The inhibition of proliferation was $30.0{\pm}13%$ compared to the control. In addition, the MLR with either the CD4+CD25+ or CD4+CD25- cells, which were isolated by MidiMacs, from the C3H/He SP treated with the recipient SP and IL-2 was evaluated. The donor SP treated with the recipient cells and IL-2 contained more CD4+CD25+ cells ($5.4{\pm}1.5%$) than the untreated mice SP ($1.4{\pm}0.3%$)(P<0.01). There was a profound inhibition in the CD4+CD25+ cells ($61.1{\pm}6.1%$), but a marked proliferation in the CD4+CD25- cells ($129.8{\pm}65.2%$). Mice in the CD4+CD25+ group showed low GVHD scores and a slow progression from the post-HSCT day 4 to day 9, but those in the control and CD4+CD25- groups had a high score and rapid progression (P<0.001). The probability of survival was 83.3% in the CD4+CD25+ group until post-HSC day 35 and all mice in the control and CD4+CD25- groups died on post-HSCT day 8 or 9 (P=0.0105). Conclusion: Donor graft engineering with irradiated recipient SP and IL-2 (recipient specific transfusion) can induce abundant regulatory CD4+CD25+ cells to prevent GVHD.