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Hematopoietic stem cell transplantation (HSCT) remains an in-
dispensable therapeutic strategy for various hematological dis-
eases. This review discusses the pivotal role of bone marrow 
(BM) niches in influencing the efficacy of HSCT and evaluates 
the current animal models, emphasizing their limitations and 
the need for alternative models. Traditional animal models, 
mainly murine xenograft, have provided significant insights, 
but due to species-specific differences, are often constrained 
from accurately mimicking human physiological responses. 
These limitations highlight the importance of developing alter-
native models that can more realistically replicate human he-
matopoiesis. Emerging models that include BM organoids and 
BM-on-a-chip microfluidic systems promise enhanced under-
standing of HSCT dynamics. These models aim to provide more 
accurate simulations of the human BM microenvironment, po-
tentially leading to improved preclinical assessments and the-
rapeutic outcomes. This review highlights the complexities of 
the BM niche, discusses the limitations of current models, and 
suggests directions for future research using advanced model 
systems. [BMB Reports 2024; 57(8): 352-362]

INTRODUCTION

Hematopoietic stem cell transplantation (HSCT) has been con-
sidered a beacon of hope for patients suffering from a variety 
of hematological disorders, offering a potential pathway to heal-
ing through reprogramming of the hematopoietic system. The 
advances of gene editing technologies, which include CRISPR/ 

Cas9 and next-generation base and PRIME editors, have sig-
nificantly improved therapeutic feasibility by enabling precise 
correction of autologous HSCs. In light of this, numerous cli-
nical trials are currently being conducted worldwide, and the-
rapies such as Casgevy (exa-cel) and Lyfgenia (lovotibeglogene 
autotemcel) have just received conditional clinical approval (1, 
2). Despite these advances, the successful engraftment and 
subsequent long-term persistency of gene-edited HSCs within 
the recipient’s bone marrow (BM) remain pivotal challenges, 
highlighted by the resilience of HSCs against genotoxic stress 
and hematopoietic dynamics. While these gene editing treat-
ments are expected to deliver therapeutic benefits, they still 
carry significant disadvantages. Notably, in treatments such as 
nula-cel, unexplained cases of pancytopenia in certain cohorts 
have resulted in clinical trials being halted (3).

To ensure the successful outcome of ex vivo HSC gene 
therapy, the long-term tracking of cell fate is imperative. Pre-
clinical animal models have long served as standard tools, 
providing insights into the engraftment process and the dyna-
mics of stem cell-niche interactions (4). However, the conven-
tional animal models exhibit significant limitations. Notably, 
controversial outcomes are often incurred by differences in 
species-specific niche components (5, 6). Given these constraints, 
there is a growing interest in developing alternative transplan-
tation models. This review investigates the current landscape 
of animal models in HSC transplantation, delves into the spe-
cific limitations, and discusses the development of alternative 
transplantation models.

MAIN TEXT

HSC homing and engraftment to BM niches following 
transplantation
Most hematopoiesis and immune cell production takes place 
within the BM niches with intricate structure (7), facilitating 
fine-tuned control over homeostatic and stress responses. Thus, 
HSC homing and engraftment are crucial steps in the process 
of HSCT for long-term persistency and the subsequent multi-
plication of blood lineage cells within the marrow to restore 
the hematopoietic system (8, 9). 
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Fig. 1. Hematopoietic niches in bone marrow. Organization and cellular interactions within the hematopoietic stem cell (HSC) niches of 
adult bone marrow (BM). HSCs are predominantly situated in proximity to the marrow vasculature, in perivascular niches. The niche 
includes various cell types, such as endothelial cells, CD169+ macrophages, and LepR+ CXCL12-abundant reticular (CAR) cells, dendritic 
cells (DCs), Nestin+ bone marrow stromal cells (BMSCs), and adipocytes. The niche contributes to HSC self-renewal, proliferation, and 
differentiation via the expression of CXCL12 and stem cell factor (SCF). Conversely, the endosteal niche houses quiescent HSCs, and is 
characterized by osteoblast, osteocyte, osteoclast, osteomac, and schwann cells, and megakaryocytes, which provide a specialized cellular 
architecture for hematopoiesis regulation and quiescence. The factors related to bone metabolisms and transforming growth factor beta-1 
(TGF-1), play a crucial role in the long-term persistence of quiescent HSCs. Various factors in the microenvironment, such as stiffness, 
calcium levels, oxygen gradients, and reactive oxygen species, help maintain the dormancy and quiescence of HSCs.

Intravenously infused HSCs home and engraft via a distinct 
series of molecular processes. Circulating HSCs are first attracted 
to home in the BM microvasculature by a gradient of small 
molecules released by the BM microenvironment. Among pro-
minent small molecules, stromal-derived factor-1 (SDF-1, also 
known as CXCL-12) plays a crucial role (10, 11). Upon bind-
ing of SDF-1 to the corresponding receptor, CXCR4 on the cell 
surface of HSCs, other binding molecules, such as integrin 
(VLA-4), are activated, leading to firm adhesion to the target 
endothelial cells (12). In addition to VLA-4, other molecules 
that include P-selectin glycoprotein ligand-1 (PSGL-1), type 1 
receptor for S1P (S1PR1), and FLT3, on the surface of HSCs 
slow down and halt the cells by tethering to P-selectin and 
E-selectin, as well as vascular cell adhesion molecule-1 (VCAM-1) 
on endothelial cells, which partially mirrors the rolling of 
leukocytes (13, 14). Following adhesion, HSCs transmigrate 
across the endothelial barrier into the extravascular cord and 
BM space, the so-called transendothelial migration. While firm 
adhesion by VLA-4/VCAM-1 and SDF/CXCR4 improve the 
migration, the regulation of vascular endothelial (VE)-cadherin, 
a critical molecule forming endothelium integrity, improves 
the efficiency of transvascular migration (15). HSCs are then 

redistributed and lodged within the niches. Once in the BM 
niche, interaction takes place within various kinds of BM con-
stituting cell types, which include both hematopoietic and non- 
hematopoietic cells, such as mesenchymal and stromal cells 
(MSCs), nerves, osteoblasts, adipocytes, endothelial cells, and 
extracellular matrix (ECM) components as well (16). Of note, 
transplanted HSCs have a propensity to migrate toward the en-
dosteal region for life-long proliferation, while the cells com-
mitted to an immediate differentiation toward specific lineage 
tend to move to near the BM sinusoids (17-19). The perivas-
cular niche close to the sinusoidal blood vessels within the 
BM central marrow cavity predominantly supports the active 
formation of myeloid and lymphoid cells, while the endosteal 
niche located near the trabecular bone preserves dormant 
long-term HSCs that are capable of replenishment (Fig. 1) (18, 
20). The dynamic interaction of HSCs within the niche 
microenvironment and the balance between these niches are 
essential factors for the successful engraftment of transplanted 
HSCs and their long-term persistence.
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The role of perivascular BM niche  in HSC proliferation and 
differentiation 
The perivascular niche is rich in endothelial cells and perivas-
cular MSCs that produce factors that are crucial for supporting 
immediate HSC proliferation and differentiation following trans-
plantation (21, 22). The perivascular niche-specific cells secrete 
various growth factors and chemokines, ensuring the retention, 
self-renewal, and differentiation of HSCs (23). Endothelial cells, 
major cellular components in the niche, secrete SDF-1 and 
stem cell factor (SCF). As circulating HSCs are encountered 
most frequently, the cells form a critical cellular population to 
secrete or express the aforementioned molecules, such as 
E-selectin, P-selectin, and VCAM-1, as well as SDF-1, facilita-
ting the adhesion and transmigration of HSCs across the blood 
vessel wall into the BM (22). Among the niche cells, leptin 
receptor (LepR)-expressing CXCL12 abundant reticular cells 
(CARs) secrete 100 times more CXCL12 than do endothelial 
cells, facilitating the active cycling of HSCs (24). Furthermore, 
these cytokines regulate the balance between the quiescence 
and active cycling of retained HSCs to promptly proliferate 
and promote mature multiple cell populations (22, 25, 26). 
Nestin+ bone marrow mesenchymal stromal cells (BMSCs) 
and pericytes are also another source for a range of SCF and 
CXCL12 (27). Of the secretory molecules, angiopoietin-1 and 
Notch ligand take on the roles of HSC maintenance, lineage 
commitment, and regeneration (28). Recent studies have eluci-
dated the considerable prevalence of adipocytes and variabil-
ity in the red marrow, as one of the crucial compartment cells 
in the perivascular niche, and due to its proximity, closely 
associated with HSC, as well as sinusoidal vasculature (29). 
Thus, adipocytes significantly contribute to the hematopoiesis, 
in alignment with the intrinsic properties of the BM, by sec-
reting factors, such as CXCL12 and SCF (30). Tissue-resident 
immune cells could also support the maintenance and hema-
topoiesis of the seeded HSCs. In the perivascular niche, tissue- 
residing CD169+ macrophages support the survival and reten-
tion of HSCs (31). Dendritic cells (DC) can affect the HSC 
niche through the secretion of cytokines and other factors, 
leading to the survival and differentiation of B cells (32).

The role of endosteal BM niche in HSC quiescence and 
long-term maintenance
The trabecular bone surrounding the marrow contributes to 
forming the porosity, providing the cavities where HSCs settle 
and reside. The endosteal niche primarily induces HSC dorman-
cy and maintains quiescence to protect HSCs from exhaustion, 
and maintains their long-term repopulation capacity (20, 21). 
The endosteal niche provides signals that help retain HSCs in a 
quiescent state, including osteopontin (OPN), angiopoietin-1 
(Ang-1), and thrombopoietin (TPO). Osteoblasts (OBs), crucial 
for forming the endosteal niche, also secrete CXCL12, but in 
much greater amounts compared to other cells in the perivas-
cular niche, so contribute to the quiescence of HSCs (33). In 
addition to CXCL12, Ang-1 and TPO, which bind to the cor-

responding receptors Tie2 and MPL, respectively, improve HSC 
quiescence and maintain long-term repopulation regional HSCs 
(28, 34). OPN plays an essential role, both in determining 
where HSCs are located, and in serving as a physiological 
suppressor of the proliferation, eventually leading to HSC 
quiescence (35). Bone morphogenetic protein (BMP) signaling, 
particularly subtype 4 within the endosteal niche, contributes 
to the long-term engraftment of HSC (36). The extent of mem-
brane-bound ligands, such as Jagged-1 and N-cadherin, has 
been considered to also play a crucial role in the regulation of 
HSC self-renewal and endosteal-HSC interactions (37, 38). 
While primarily involved in bone resorption, osteoclasts (OCs) 
play a role in modulating the BM microenvironment and can 
influence HSC quiescence via increasing TGF-1, and BMP2 
and 4, derived from the destructing osteocytes (39). The 
recently discovered cell, osteomacs (OMs), located proximate 
to osteoblasts, would support HSCs through the formation of 
endosteal structure, thereby maintaining the integrity of the 
niche, or augmenting the function of other cellular compart-
ments (40, 41). Megakaryocyte (MK) plays a pleiotropic role in 
HSC proliferation, but in this niche, it secretes CXCL4, FGF-1, 
and TGF-1, subsequently regulating HSC cycling (42). Schwann 
cells, in conjunction with sympathetic nerves, induce a quie-
scent state in HSCs secreting TGF-1, and maintain direct 
contact with them (43). The dynamic changes in the micro-
environment collectively produced by multiple cell types and 
their structure, such as stiffness, calcium ion level, oxygen 
gradient, and related ROS and hypoxia-inducible factors (HIFs), 
also exert the quiescence of HSCs (44). Importantly, under he-
matologic malignancies, such as acute myeloid leukemia (AML), 
BM experiences pathophysiological changes, such as imbalance 
in bone formation, subsequently impairing the engrafting of 
transplanted HSPCs. Thus, leveraging the appropriate precli-
nical models that mimic the structural features and cellular 
makeup of the BM niches can increase the credibility of research.

Current preclinical animal models for human hematopoiesis 
and HSCT
Limitations and advancements in humanized xenograft mouse 
models for HSCT research: Even though a range of animal 
models, such as zebrafish, are utilized, the xenograft mouse is 
the most employed preclinical HSCT ‘standard’ model. For 
human HSCT and subsequent hematopoietic recapitulation, 
the immunodeficient mice are imperative. Over the past de-
cades, various immunodeficient mouse models, such as NOD/ 
SCID, BALB/c-nude, and Rag2null strain, have been developed, 
with each strain presenting different extent of immunodefici-
ency (45-47). Among the immunodeficient mice, the huma-
nized NSG (NOD/SCID/IL2Rnull) mouse, which lacks mature 
T-cells, B-cells, and functional NK-cells, and has a mutation in 
the IL2 receptor gamma chain, is a versatile model that is 
extensively used in biomedical research (48, 49). Once en-
grafted, human HSCs in NSG mice partially reconstitute a human 
immune system introducing T-cells, B-cells, and myeloid cells 
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Table 1. Alternative HSC transplantation model candidates

Model type Key features Cell constituents Key molecules Applications Limitations References

Ossicle-based 
BMO

Use human BMSCs 
to form bone-like 
structures for 
engraftment

BMSCs (human), 
leukemia-
initiating cells 
(LIC), HSCs

CXCL12, 
TGF-1, 
VCAM1, 
ANGPT1, 
KITLG

Disease modeling, 
studying 
niche-HSC 
interactions

Limited replication of 
cellular dynamics, 
challenges in long-term HSC 
viability, species differences in 
implantation models

(56), (72), 
(73), (74), 
(87), (88), 
(89), (90) 

Self-organizing 
BMO

3D cultures that 
self-organize into 
bone marrow-like 
structures

BMSCs, 
fibroblasts, 
endothelial cells, 
HSCs

VEGF, 
BMP4, SCF, 
IL-3, Flt-3L, 
TPO, FGF-2

In-depth 
hematopoiesis 
study, 
therapeutic 
target validation

Incomplete niche components, 
maintaining long-term 
hematopoiesis, may not 
support all cell types involved 
in BM

(70), (71), 
(75), (91)

Blood vessel 
organoid 
(BVO)

Form vascular-like 
structures

Endothelial cells, 
mural cells

VEGF-A, 
FGF-2, 
BMP4

Study of 
vascular biology 
and HSC 
interactions

Cannot replicate endosteal 
BM niches, limited to initial 
HSC transplantation and 
vascular interactions

(93), (94)

Thymic 
organoid 
(TO)

Mimic the thymic 
environment for 
T cell development

Thymic 
epithelial cells 
(TECs), HSCs

Activin A, 
BMP4 
inhibition 

Study of 
T cell 
development, 
immune 
responses

Differences from 
human biology limit clinical 
translation; focus on 
immune modeling, 
not direct hematopoiesis

(96), (97)

BM-on-a-chip Replicate BM 
microenvironment 
in a microfluidic 
device

MSCs, 
endothelial cells, 
osteoblasts, 
HSCs

Various 
chemokines, 
adhesion 
molecules, 
nutrients, 
oxygen

High-throughput 
drug testing, 
HSC niche 
interaction 
studies

Cannot fully replicate 
in vivo BM complexity; 
challenges in scaling and 
standardization for 
broader applications

(99), (100), 
(101), (102), 
(103)

into the bloodstream (50).
Although the mouse BM environment, including the endo-

steal and perivascular niches, somehow supports the survival 
and persistent hematopoiesis of engrafted human HSCs, they 
are considered less than ideal, due to species-specific variations 
between human and murine physiology (46, 47). The features 
may not fully mirror those found in human BM, such as 
cytokine profiles, adhesion molecules, and other niche com-
ponents necessary for the engraftment, survival, and self-renewal 
of both normal and malignant hematopoietic cells. One exam-
ple is that BMSCs respond to leukemia cells by modifying their 
secretion profiles, leading to the development of a competitive 
environment that supports leukemia stem cells (LSC) (51). To 
investigate BM failure syndromes, the various lymphoid popu-
lations, and non-hematopoietic elements, such as a sympathetic 
innervation, as seen in the BM of aplastic anemia or myelo-
dysplastic syndrome (MDS) should be elucidated (52). Even 
AML patient-derived xenograft (PDX) mouse models cannot 
fully recapitulate AML hematopoiesis, due to insufficient re-
producibility caused by irradiation-mediated stroma damage, 
delayed engraftment period, and subsequently diminished en-
graftment rate. Thus, these inborn limitations of the model re-
sult in the poor engraftment of many human leukemias and 
other blood disorders in these standard models (53).

To overcome these limitations, a variety of preclinical models 
beyond humanized NSG mice are being developed. One 
simple approach is to genetically modify immunodeficient mice 

to replicate the patient- or disease-specific environment, repre-
senting human cytokines or growth factors like SCF, GM-CSF, 
IL-3, and TPO (54-56), or to transplant together with patient- 
derived BMSCs (57). Humanized BLT (BM, liver, and thymus) 
mice are implanted with human BM, liver, and thymus tissues, 
leading to a more comprehensive reconstitution of the human 
immune system (58). Enhanced T-cell generation enables the 
replication of more efficient models of infection or infection- 
induced tumor formation, such as HIV infection and Kaposi’s 
sarcoma and immune-related diseases, including cytokine- 
releasing syndrome (59-61). While these systems provide 
essential insights into human health and disease, each model 
still has limitations in fully replicating human physiology.
Benefits and challenges of autologous nonhuman primate (NHP) 
model: Of note, NHPs share significant genetic and anatomi-
cal similarities with humans, making them a more comparable 
model reflecting human physiology. In particular, the large 
capacity of the hematopoietic cell reservoir complies with the 
requirement for autologous transplantable cell dose, thus crea-
ting an autologous transplantation preclinical model (62, 63). 
In addition, the similarity in immune system facilitates a more 
accurate assessment of how the human immune system reco-
vers post-transplant. Utilizing these characteristics, it is possi-
ble to conduct research that elucidates new functions of re-
latively novel blood lineage cells and hematopoietic dynamic 
under normal or perturbed situations (64). With average life-
span of more than 30 years, the autologous NHP animal model 
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is capable of predicting the clinical outcomes of HSC trans-
plantation, such as ex vivo gene therapy from the long-term 
aspect, assessing engraftment efficiency, persistence, and po-
tential adverse effects (62, 63). 

Even though the model system offers numerous benefits, 
there are several hurdles, the greatest of which is the increa-
singly stringent ethical standards and regulatory controls due 
to the cognitive abilities and social needs of NHPs. It is also 
challenging that NHPs require specialized facilities, which 
along with their care, results in higher costs, compared to 
other models. Therefore, there is a requirement for alternative 
preclinical models that more closely mimic the human BM 
microenvironment for the simulation of hematopoiesis and 
immune responses, and that empower long-term tracking, which 
could further improve the predictive value of preclinical 
studies for human clinical outcomes (Table 1).

Alternative HSCT models
Key requirements and characteristics of organoids for repli-
cating BM function and structure: Organoids are self-organized 
3D cellular structures that mimic the microarchitecture and 
function of the corresponding organs. Induced pluripotent stem 
cells (iPSCs), or adult stem and progenitor cells, as well as 
differentiated cells isolated from the body, are differentiated 
under defined chemicophysical conditions to replicate the func-
tional and structural features of the original organ (65, 66). 
Generally, the organoid should meet several key requirements: 
(a) It should have a three-dimensional structure with cells that 
either preserve or establish the identity of the organ it aims to 
model; (b) It should contain various cell types, mirroring the 
diversity and interactions found in the particular organ; (c) The 
organoid should be capable of performing some or all of the 
key functions of the organ it models; (d) It should undergo 
self-organization according to the same intrinsic developmen-
tal processes (67, 68).
Advances in 3D bone marrow organoid (BMO) for hemato-
poiesis and cellular interactions: Due to the challenges in in-
vestigating a hematopoiesis and related cellular interactions ex 
vivo, especially homing and the early engraft phase immedi-
ately after HSPC transplantation, there have been efforts for 
over 30 years to create a 3D model structure for BM mimicry 
(69-75). BM is highly heterogeneous tissue, necessitating the 
replication of endosteal and perivascular niches to incorporate 
hematopoiesis, as well as bone homeostasis, and stromal and 
vascular support (22, 76, 77). The diversity within the BM 
results from its mixture of various cells that include 
hematopoietic, bone, stromal, and endothelial cells, plus ECM 
molecules (78-80). These cells need to be more than just a 
cluster; they should be intricately arranged, forming diverse 
niches that are supported by stromal cells (20, 22, 76, 78). 
This can be achieved by constituting the space with ECM 
components, including collagen fibers and glycoproteins, as 
well as cellular spatiotemporal organization, such as adipo-
cytes and BMSCs. Furthermore, restoring the appropriate stiffn-

ess is also required (81). By forming niche structures, it becomes 
possible to observe the fundamental process of hematopoiesis, 
as well as the restoration of additional functions, such as the 
secretion of cell-specific growth factors and cytokines. Finally, 
these recapitulation processes must occur spontaneously, en-
suring sustainability to support long-term hematopoiesis over 
time. With these key features, BMOs hold promise as tools for 
transplantation research, because they can be cultured for a 
long time, and are suitable for transplantation, providing 
stability and reproducibility. Additionally, BMOs can over-
come the limitations of previous models by accurately replica-
ting individual genetic defects in the BM (82, 83). In early 
research, BMOs were developed by combining biological 
elements, such as bone fragments, and non-biological compo-
nents, like synthetic scaffolds. Somehow, the outcomes of 
these research are more akin to 3D scaffolds supporting in 
vitro hematopoiesis (84-86). Rather than simply imitating 3D 
structures using biocompatible materials, this review paper will 
cover research that incorporates the more complex features of 
the organoids mentioned previously.
Challenges in ossicle-based BMO for humanized hematopoietic 
and leukemic research: Early research on BMOs involved 
creating ossicles, small bone fragments, and subsequently 
transplanting them into mouse models or grafting HSCs. A 
series of studies have attempted to reproduce a humanized 
BM environment through the injection of cells of mesodermal 
origin (87). The Majeti group devised a method for the hu-
manized BM niche microenvironment. They ectopically trans-
planted the ossicles differentiated from BMSCs into humanized 
mice (56, 88). Furthermore, they analyzed the engraftment of 
HSCs from AML, acute promyelocytic leukemia (APL), and 
myelofibrosis (MF) patients by using immunodeficient mice 
producing human cytokines, in particular, assessing the incre-
ased settlement of leukemia-initiating cells (LIC) (56). Pievani 
et al. further conducted the research by using BMSCs derived 
from patients to replicate the BM structure unique to AML 
patients (89). They implemented blood-borne fibroblasts (BF), a 
unique cell population, into the mouse model and observed 
the formation of a cortical bone outer layer that surrounded 
cavities populated with hematopoietic tissues, including the 
erythroid, myeloid, and megakaryocytic lineages (90). More-
over, this structure contains CD146-expressing stromal cells 
derived from human cells, thereby complying with the struc-
tural requirements to function as a hematopoietic niche. 
Markedly, this structure embodied comparable populations of 
Lin−/Sca-1+/c-Kit+ (LSK) progenitors, LT-HSCs, ST-HSCs, and 
multipotent progenitors (MPP). In functional aspect, it also 
expressed hematopoietic and HSC niche marker genes, such 
as CXCL12, VCAM1, ANGPT1, KITLG, SPP1, and JAG1, that 
are found in intrinsic BMSCs (73). Given that the hybrid gel 
enriched primitive HSC and their progeny, including MPPs 
and multi-lymphoid progenitors (MLPs) in in vitro HSPC cul-
ture assays (74), applying materials reflecting active moieties of 
BM tissue, such as hybrid TG-PEG/HA hydrogels, might im-
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prove the in vivo retention of hematopoietic cells. 
The transplantation within immunodeficient mice to form a 

complete structure of organoids is noteworthy. While the bone 
metabolisms by OCs and OBs originate from the donor to 
replicate the cortical bone and medullary cavity, the vascular 
structures required for the complete differentiation of hemato-
poietic cells, including endothelial and perivascular cells, ori-
ginate from either mouse or externally-injected human cells. To 
overcome these hurdles, Gieger and colleagues have generated 
structures on a microwell plate by mixing the MSC and vascular 
endothelial cells (ECs) to create a model that reproduces stromal 
and vascular structures (72). Within these structures, the pro-
liferation of ENG+CD146+ MSCs, adipocytes, and pre-osteoblasts 
occurs alongside self-organized vasculature. However, there 
remains controversy over whether to classify these models as 
organoids or simple spheroids. Moreover, questions remain 
about the fidelity of the recreated intricate BM structure, leading 
to the challenge of accurately replicating porosity and density, 
and the effectiveness in truly replicating hematopoiesis.
Innovations and limitations of self-organizing BMOs for repli-
cating hematopoiesis and BM niche dynamics: The current 
trend is shifting from cell-to-cell communication model to the 
natural development of BM niche microenvironments that mir-
ror actual tissue environment. From this perspective, Selami 
and colleagues have successfully modeled the definitive hema-
topoiesis, producing HSPCs that are capable of creating RBCs 
containing adult -globin and -globin, and T-lymphocytes 
with an extensive T-cell receptor (TCR) repertoire (91). In fact, 
they generated the structures to replicate the yolk sac, where 
initial hematopoiesis occurs, since their goal is to produce 
blood lineages that are applicable for transfusions, allowing 
the absence of a BM-like structure. 

Khan and colleagues have recently developed a promising 
3D BM organoid that recapitulates the central myelopoietic 
BM cavity, including mesenchymal elements, myeloid cells, 
and sinusoidal-like vasculature (70, 71). This organoid is spon-
taneously generated through a stepwise differentiation process 
over 18 days, using specific growth factors, and encompasses 
four phases: mesodermal aggregates (phase I), vascular and he-
matopoietic lineages (phase II), vascular sprouting (phase III), 
and organoid formation (phase IV). Indeed, this process allows 
for the formation of a 3D structure that is composed solely of 
BMSCs, fibroblasts, endothelial, and hematopoietic cells, with-
out the need for xenotransplantation, or the mixing with cells 
from other sources. The transcriptomic profile of each part and 
the molecules involved in the interaction between niche-blood 
lineage cells have been shown to be similar to those observed 
in BM in vivo. Concurrently, Frenz-Wiessner and colleagues 
also reported the successful creation of BMOs using iPSCs 
(75). Their approach began with the formation of embryoid 
bodies, followed by hemogenic and endothelial induction, a 
sprouting phase, and finally, organoid maturation. Unlike the 
predominantly erythromyeloid cell types in the hematopoietic 
compartment, as shown by Khan et al., this organoid speci-

fically induces spontaneous granulopoiesis. This model advanced 
to the stage of transplantation experiments, in particular ena-
bling the simulation of a disrupted hematopoietic environment 
and TGF--induced BM fibrosis. Furthermore, gene-edited 
iPSC-derived BMOs effectively modeled characteristics of an 
inherited BM failure syndrome by replicating myelofibrosis 
pathophysiology. This approach modeled human VPS45 defi-
ciency, BM failure with neutropenia, and myelofibrosis, a 
notable advance over previous challenges faced by preclinical 
animal models or ossicle-based BMOs (75).

However, it is generally acknowledged that there are limita-
tions to replicating their complex structures. In particular, it is 
challenging to precisely reproduce stromal cells and vascular 
structures (70, 92). Though their model can replicate two key 
aspects of marrow structure, it lacks lymphoid, adipocyte, and 
osteochondral cells, and does not support bone deposition. 
Moreover, there might be constraints to support long-term cell 
maintenance; it also remains questionable whether the HSCs 
in the BMOs can truly be classified as LT-HSCs or not. There-
fore, it is crucial to replicate the endosteal niche to restore the 
quiescence of HSCs, and to analyze the long-term clonal dyna-
mics of gene-edited cells. In addition, the diminishing propor-
tion of endothelial cells over time suggests that implementing 
a microfluidic system could address this issue; it would more 
directly reflect the patterns of HSCs homing via the vascular 
system.
Developing blood vessel organoids (BVOs) to model HSCT 
and early hematopoietic processes: BVOs are developed by 
differentiating stem cells, including pluripotent stem cells, in a 
3D culture environment that promotes the formation of 
endothelial cells and pericytes, and subsequently, vessel-like 
structures that resemble capillaries or larger blood vessels (93, 
94). The presence of specific growth factors, including VEGF- 
A, FGF-2, and BMP4, together with the 3D culture conditions, 
facilitate these cells to self-organize (93). BVOs can develop 
lumen-containing vessel structures that are able to support 
blood flow, and range from simple capillary networks to more 
complex structures that include multiple vascular cell types, 
exhibiting functional similarity to that attributed to blood 
vessels in the body, including barrier functions and response 
to shear stress (94).

HSC transplantation on a BVO could offer a novel approach 
to investigate the complicated process of hematopoiesis, espe-
cially focusing on the commencement of HSC homing and 
engraftment. The BVO could allow the aforementioned elabo-
rate molecular interactions between HSC and perivascular BM 
niche cells at the homing stage to be examined, and the fol-
lowing HSC self-renewal and differentiation. Pathological con-
ditions, such as myeloproliferative neoplasms or BM failure 
syndromes, perturb the vasculature and hematopoietic systems 
(95); hence, the model system can be adapted to simulate the 
compromised HSC transplantation. Ensuring that transplanted 
HSCs properly integrate with the organoid vasculature and 
achieve functional maturation still poses technical difficulties. 
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What is more, BVOs cannot precisely reproduce the endosteal 
BM niche structures, thus they may only be useful for ob-
serving the initial transplantation process.
Thymic organoids (TOs) to model T cell development and 
immune responses for research and drug discovery: TOs are 
engineered constructs that are designed to mimic the microen-
vironment and functional properties of the thymus, a primary 
lymphoid organ that is responsible for the maturation of T-cells. 
Research using TO allows in-depth study of thymic function, 
T-cell development, and immune responses. TOs are developed 
by culturing thymic epithelial cells (TECs) and pluripotent stem 
cells in a scaffold that promotes their self-organization and then 
recapitulates the thymic microenvironment, including the pre-
sentation of self-antigens for negative selection, critical for 
developing a self-tolerant T-cell repertoire (96, 97). 

The concept of HSC transplantation to TOs emerged from 
the need to study thymic functions and T-cell development, 
rather than BM hematopoiesis (98). Once HSCs are introduced 
into these organoids, HSCs are co-cultured with TECs within 
the organoids, facilitating direct cellular interactions that are 
essential for T-cell maturation, mimicking the natural thymic 
selection processes. However, translating findings from organoid 
models to human treatments involves significant challenges, 
due to differences between the model systems and human 
biology. Thus, this model could be used in a limited capacity 
for preliminary drug discovery, allowing for the screening of 
immunomodulatory agents and the study of immune-related 
diseases.
BM-on-a-chip: innovating hematopoietic BM niche replication in 
a microfluidic device: BM-on-a-chip is an innovative 
technology that aims to replicate the complex microen-
vironment of the BM, especially in a microfluidic device, 
mimicking the bloodstream around the hematopoietic niches 
(99). Through the convergence of multiple technologies that 
include tissue engineering, microfabrication, and biomaterials 
science, the dynamic BM models leverage the micro-engi-
neered environment to mimic the key features of the hema-
topoietic BM niches under controlled conditions. BM-on-a- 
chip devices are designed to replicate the physical, chemical, 
and biological cues of the BM microenvironment, including 
the spatial organization of cells, ECM composition, and fluid 
shear stress (99-101).

The chip could be used to elucidate the mechanisms by 
which HSCs home and engraft. Various types of cells, such as 
MSCs, endothelial cells, and osteoblasts, within microfluidic 
chambers embedded in biomaterials that mimic the ECM, 
provide a 3D structure that supports cell-cell and cell-matrix 
interactions that are related to HSC maintenance (100). In 
addition, a dynamic flow system facilitates the simulation of 
homing and subsequent engraftment of transplanted HSC 
through the blood stream, and the cellular behavior can be 
monitored real-time using imaging and other analytical tech-
niques. This flow can be adjusted to study the effects of the 
transport of nutrients, oxygen, and signaling molecules, such 

as chemokines and adhesion molecules, and mechanical forces 
(102). The response to external factors, such as drugs, irradi-
ation, or chemotherapy, in terms of HSC engraftment efficien-
cy, niche occupancy, and post-transplantation recovery, can 
be assessed in a controlled high-throughput manner (103). 
Similar to BMOs, BM-on-a-chip models can model diseases 
that affect HSCs and their niches, such as leukemias or MDS 
(101). However, despite their advanced capabilities, BM-on-a- 
chip models still cannot fully replicate the complexity and 
dynamics of the in vivo BM environment, including bone 
microstructure and long-term changes within the system. Chal-
lenges remain in scaling up the technology for larger studies, 
and in standardizing chip designs and operating procedures to 
ensure reproducibility. 

CONCLUDING REMARKS AND FUTURE PERSPECTIVES 

This review has explored the complexities of BM niches and 
the practicality of preclinical animal models for HSCT. While 
these models offer invaluable insights, they also bear several 
limitations, which include discrepancies in mimicking human 
physiological responses, and their burdensome nature in use. 
To overcome these constraints, alternative preclinical models, 
such as BMO and BM-on-a-chip, could be employed, suggest-
ing the potential for a more accurate simulation of the human 
BM microenvironment. Given the enhanced understanding of 
the BM microenvironment and relevant hematological dis-
orders, the technology behind these innovative models is 
continually advancing. The authentic replication of human BM 
allows for more precise modeling of diseases and personalized 
treatment strategies. These robust platforms serve as essential 
tools for screening in personalized medicine, providing a tail-
ored approach to treatment that accounts for individual differ-
ences. 

To serve as a superior model, these models should be re-
fined to ensure their scalability and reproducibility. In addition, 
it is essential to expand investigations to encompass the re-
percussions of genetically engineered cells transplanted into 
the host, as well as their subsequent effects on the marrow 
milieu (104, 105). Current studies have primarily focused on 
the impact received by genetically corrected cells and their 
sustainability within animal models. One promising tactic for 
the accurate replication of intricate biological structures is the 
utilization of the assembloid, a type of advanced organoid 
technology (106). Created by combining different types of 
organoids, this will allow the modelling of interactions, more 
specifically between different cell types and tissues, in a more 
integrated and physiologically-relevant context. It is anticipated 
that utilizing and fusing BVOs or bone organoids could im-
prove the current limitations of BMOs in replicating vascular 
development and bone structure. Even though the distinctive 
properties of HSCs make them ideal candidates for ex vivo 
gene therapy, the end goal is to deliver genetic material di-
rectly into the organism, the so-called in vivo gene therapy 



 Exploring bone marrow niches and alternative models in hematopoietic stem cell transplantation
Byung-Chul Lee

359http://bmbreports.org BMB Reports

(107). The alternative transplantation model system offers pro-
mising avenues for in vivo gene therapy techniques, potential-
ly revolutionizing treatment protocols for genetic and acquired 
BM disorders.
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