• Title/Summary/Keyword: HS-SPME-GC/MS

Search Result 51, Processing Time 0.028 seconds

Changes in volatile compounds in rice-based distilled soju aged in different types of containers (숙성기간과 저장용기를 달리한 쌀 증류식 소주의 휘발성 향기성분 변화)

  • Kim, Wan-Keun;Lee, Seung-Joo
    • Korean Journal of Food Science and Technology
    • /
    • v.51 no.6
    • /
    • pp.543-550
    • /
    • 2019
  • In this study, volatile compounds in 13 aged and 3 commercial rice-distilled soju samples were isolated by headspace solid phase microextraction (HS-SPME) and analyzed by gas chromatography-mass spectrometry (GC-MS). A total of 85 volatile components including 35 esters, 15 alcohols, 5 ketones, 3 aldehydes, 15 miscellaneous, and 14 unknowns were identified. Esters and alcohols were the largest groups among the quantified volatiles. Differences in volatile compounds among the distilled soju samples and possible sample groupings were examined by principal component analysis of the GC-MS datasets. The first and second principal components (PC1 and PC2, respectively) explained 51.94% of the total variation across the 16 samples. The samples aged in oak containers had higher concentrations of ketones, aldehydes, and miscellaneous compounds. In the positive direction of PC1, oak-aged samples were observed, while, pot-aged samples were observed on the far negative side. Furthermore, samples aged for longer periods, such as 18 months, were observed in the positive direction of PC2.

Roasting and Cryogenic Grinding Enhance the Antioxidant Property of Sword Beans (Canavalia gladiata)

  • Jung, Ju-Yeong;Rhee, Jin-Kyu
    • Journal of Microbiology and Biotechnology
    • /
    • v.30 no.11
    • /
    • pp.1706-1719
    • /
    • 2020
  • The objective of this study was to optimize the conditions for enhancing the antioxidant properties of sword bean (Canavalia gladiata) as a coffee substitute in two processing methods, roasting and grinding. The optimum conditions for removing off-flavor of the bean and maximizing functionality and efficiency were light roasting and cryogenic grinding (< 53 ㎛). In these conditions, extraction yield was 16.75%, total phenolic content (TPC) was 69.82 ± 0.35 mg gallic acid equivalents/g, and total flavonoid content (TFC) was 168.81 ± 1.64 mg quercetin equivalents/100 g. The antioxidant properties were 77.58 ± 0.27% for DPPH radical scavenging activity and 58.02 ± 0.76 mg Trolox equivalents/g for ABTS radical scavenging activity. The values for TFC and ABTS radical scavenging activity were significantly higher (p < 0.05) than in other conditions, and TPC and DPPH radical scavenging activity were second highest in lightly roasted beans, following raw beans. HS-SPME/GC-MS analysis confirmed that the amino acids and carbohydrates, which are the main components of sword bean, were condensed into other volatile flavor compounds, such as derivatives of furan, pyrazine, and pyrrole during roasting. Roasted and cryogenically ground (cryo-ground) sword beans showed higher functionality in terms of TFC, DPPH, and ABTS radical scavenging activities compared to those of coffee. Overall results showed that light roasting and cryogenic grinding are the most suitable processing conditions for enhancing the bioactivity of sword beans.

Volatile Analysis of Commercial Korean Black Raspberry Wines (Bokbunjaju) Using Headspace Solid-phase Microextraction (Headspace Solid-phase Microextraction을 이용한 시판 복분자주의 휘발성분 분석)

  • Lee, Seung-Joo
    • Korean Journal of Food Science and Technology
    • /
    • v.46 no.4
    • /
    • pp.425-431
    • /
    • 2014
  • In this study, the volatile compounds in 24 commercial Korean black raspberry wines were isolated by headspace solid-phase microextraction and analyzed by gas chromatography-mass spectrometry (GC-MS). A total of 43 volatile components, including 15 esters, 12 terpenes, 7 alcohols, 4 acids, 3 ketones, and 2 aldehydes, were identified. Ethyl esters and alcohols such as ethyl acetate, ethyl octanoate, isoamyl alcohol, and phenethyl alcohol were the most represented groups among the quantified volatiles. In particular, various terpenes such as DL-limonene, linalool, alpha-terpineol, and myrtenol were identified. The differences in volatile components among the 24 black raspberry wines and possible sample grouping were examined by applying principal component analyses to the GC-MS data sets. The first and second principal components explained 43.9% of the total variation across the samples. No apparent sample groupings were observed according to manufacturing locations. The samples KU, BH, SR, and MO showed higher overall levels in the concentrations of terpenes originating from black raspberry, while other samples such as BB and HB, showed higher in ethyl ester and alcohol contents produced by yeast fermentation, respectively.

Identification of the Volatile Compounds in Polyethylene Terephthalate Bottles and Determination of Their Migration Content into Mineral Water (PET 생수병 내 휘발성 물질의 동정 및 이행량 분석)

  • Jung, Eui Min;Kim, Dong Joo;Lee, Keun Taik
    • Korean Journal of Food Science and Technology
    • /
    • v.46 no.1
    • /
    • pp.19-24
    • /
    • 2014
  • This study was carried out to identify the volatile organic compounds (VOCs) in polyethylene terephthalate (PET) bottles and to determine the extent to which VOCs migrate into mineral water during the bottling process and storage. A greater amount of nonanal and decanal was generated from the PET bottles than from the PET preforms. Benzene, ethylbenzene, nonanal, and vinyl benzoate were identified from the PET bottles when the incubation temperature of the headspace solid-phase microextraction (HS-SPME) sampler was set to 60, 80, and $100^{\circ}C$. As the incubation temperature increased, the concentrations of nonanal, vinyl benzoate, and decanal increased significantly. When the high-density polyethylene (HDPE) PET bottle caps were extracted with dichloromethane, the level of Irgafos 168 was found to be $206{\pm}20.1\mu}g/g$. The concentration of 2,4-di-tert-butylphenol in water was $4.80{\pm}0.2{\mu}g/L$. Therefore, it is necessary to avoid exposing PET and HDPE resins to high temperatures during the manufacturing process and storage of bottled water.

Evaluating the Headspace Volatolome, Primary Metabolites, and Aroma Characteristics of Koji Fermented with Bacillus amyloliquefaciens and Aspergillus oryzae

  • Seo, Han Sol;Lee, Sunmin;Singh, Digar;Park, Min Kyung;Kim, Young-Suk;Shin, Hye Won;Cho, Sun A;Lee, Choong Hwan
    • Journal of Microbiology and Biotechnology
    • /
    • v.28 no.8
    • /
    • pp.1260-1269
    • /
    • 2018
  • Production of good Koji primarily depends upon the selection of substrate materials and fermentative microflora, which together influence the characteristic flavor and aroma. Herein, we performed comparative metabolomic analyses of volatile organic compounds (VOCs) and primary metabolites for Koji samples fermented individually with Bacillus amyloliquefaciens and Aspergillus oryzae. The VOCs and primary metabolites were analyzed using headspace solid phase microextraction (HS-SPME) followed by gas chromatography time-of-flight mass spectrometry (GC-TOF-MS). In particular, alcohols, ketones, and furans were mainly detected in Bacillus-fermented Koji (Bacillus Koji, BK), potentially due to the increased levels of lipid oxidation. A cheesy and rancid flavor was characteristic of Bacillus Koji, which is attributable to high content of typical 'off-flavor' compounds. Furthermore, the umami taste engendered by 2-methoxyphenol, (E,E)-2,4-decadienal, and glutamic acid was primarily detected in Bacillus Koji. Alternatively, malty flavor compounds (2-methylpropanal, 2-methylbutanal, 3-methylbutanal) and sweet flavor compounds (monosaccharides and maltol) were relatively abundant in Aspergillus-fermented Koji (Aspergillus Koji, AK). Hence, we argue that the VOC profile of Koji is largely determined by the rational choice of inocula, which modifies the primary metabolomes in Koji substrates, potentially shaping its volatolome as well as the aroma characteristics.

Functional Characterization of khadi Yeasts Isolates for Selection of Starter Cultures

  • Motlhanka, Koketso;Lebani, Kebaneilwe;Garcia-Aloy, Mar;Zhou, Nerve
    • Journal of Microbiology and Biotechnology
    • /
    • v.32 no.3
    • /
    • pp.307-316
    • /
    • 2022
  • Yeasts play an important role in spontaneous fermentation of traditional alcoholic beverages. Our previous study revealed that a mixed-consortia of both Saccharomyces and non-Saccharomyces yeasts were responsible for fermentation of khadi, a popular, non-standardized traditional beverage with an immense potential for commercialization in Botswana. Functional characterization of isolated fermenting yeasts from mixed consortia is an indispensable step towards the selection of potential starter cultures for commercialization of khadi. In this study, we report the characterization of 13 khadi isolates for the presence of brewing-relevant phenotypes such as their fermentative capacity, ability to utilize a range of carbon sources and their ability to withstand brewing-associated stresses, as a principal step towards selection of starter cultures. Khadi isolates such as Saccharomyces cerevisiae, Saccharomycodes ludwigii and Candida ethanolica showed good brewing credentials but Lachancea fermentati emerged as the isolate with the best brewing attributes with a potential as a starter culture. However, we were then prompted to investigate the potential of L. fermentati to influence the fruity aromatic flavor, characteristic of khadi. The aroma components of 18 khadi samples were extracted using headspace solid phase micro-extraction (HS-SPME) and identified using a GC-MS. We detected esters as the majority of volatile compounds in khadi, typical of the aromatic signature of both khadi and L. fermentati associated fermentations. This work shows that L. fermentati has potential for commercial production of khadi.

Comparative Profiling of Volatiles in Flower Tea of Dendranthema zawadskii var. latilobum, Chrysanthemum morifolium, Tagetes erecta, and Matricaria chamomilla (구절초, 국화, 마리골드 및 캐모마일 꽃차의 향기 성분 비교)

  • Kanphassorn Wimonmuang;Young-Sang Lee;Seung-Young Oh;Suk-Keun Park
    • Proceedings of the Plant Resources Society of Korea Conference
    • /
    • 2020.08a
    • /
    • pp.109-109
    • /
    • 2020
  • 꽃차(Flower tea)는 최근 다양한 제품이 개발되고 소비가 확대되는 등 그 산업적 가치가 증대하고 있다. 꽃차의 향기 특성은 우렸을 때 나타나는 색깔 및 인체에서의 생리활성과 더불어 주요한 꽃차 품질결정 요소이다. 본 연구는 꽃차로의 이용이 활발한 국화과 식물 중 구절초(Dendranthema zawadskii var. latilobum), 국화(Chrysanthemum morifolium), 노랑색 및 주황색 마리골드(Tagetes erecta 'Yellow' and 'Orange'), 그리고 캐모마일(Matricaria chamomilla)의 향기 성분특성을 구명하기 위하여 제조된 꽃차를 headspace-solidphase microextraction/gas chromatography-mass spectrometry (HS-SPME/GC-MS)를 이용하여 분리, 동정하였다. 국화과 꽃차로부터 총 117종의 휘발성 성분이 확인되었는데, 각 꽃차 종류별 동정된 휘발성 성분의 개수, 주요 3개 휘발성 성분과 전체 향기성분 peak중 이들이 차지하는 구성비율(%)은 다음과 같았다: 구절초 64종, camphor (31%), α-pinene(14%), camphene(14%); 국화 60종, camphor(15%), chrysantheny acetate(13%), eucalyptol (11%); 마리골드 '옐로우' 53종, 2,4-heptadienal(26%), trans-isocarveol(21%), cis-β-Copaene(18%); 마리골드 '오렌지' 61종, β-caryophyllene(16%), β-ocimene epoxide(12%), β-ocimene(12%); 캐모마일 50종, β-farnesene(63%), nonane(9%), spathulenol(5%). 국화과 꽃차 5종 모두에서 공통적으로 검출된 성분은 β-caryophyllene, α-pinene, β-farnesene 등 10종이었으며 마리골리 '옐로'는 '오렌지'와 주요 향기성분의 조성에서 뚜렷한 차이를 나타내었다. 비록 그 함량은 낮았으나 구절초, 국화, 마리골드 '오렌지', 그리고 캐모마일은 각각 10종, 12종, 3종 및 13종이었다. 마리골드 '엘로'의 경우 검출된 모든 향기성분은 마리골드 '오렌지'나 다른 국화과 식물의 꽃차에서도 검출된 바, 향기 성분이 다양성이 다소 낮게 나타났다.

  • PDF

Volatile Compounds Analysis of Certified Traditional Doenjang (전통식품 품질인증 된장의 향기성분 분석)

  • Lee, Jang-Eun;Kang, Sun Hee;Kim, Hye Ryun;Lim, Seong Il
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.44 no.6
    • /
    • pp.944-950
    • /
    • 2015
  • The purpose of this study was to provide a basis for the management of traditional Doenjang by analyzing characteristics of volatile compounds in local Doenjang certified as a traditional food. The main compounds in Doenjang were acids, esters, aldehydes, and pyrazines, whereas relatively high intensities of acetic acid, ethyl alcohol, benzaldehyde, ethyl acetate, ethyl 2-methyl butanoate, 2,5-dimethyl pyrazine, and tetramethylpyrazine were detected among identified compounds. The analysis revealed that the composition of basic volatile compounds in Doenjang was similar, but isovaleric acid, 2-methylbenzaldehyde, tetramethylpyrazine, benzaldehyde, ethyl alcohol, ethyl caprylate, furfural and butanoic acid can serve as marker compounds for quality evaluation since they were specifically abundant in only some kinds of Doenjang. As a result, the quality status of Doenjang certified as a traditional food was determined by constructing a database of the volatile compounds, which can be suggested as a quality control method.

Temporal and Spatial Distribution of Microbial Community and Odor Compounds in the Bukhan River System (북한강 수계 미소생물 군집 및 이취미 물질의 시공간적 분포 특성)

  • Byun, Jeong-Hwan;Yu, Mina;Lee, Eunjeong;Yoo, Soon-Ju;Kim, Baik-Ho;Byun, Myeong-Seop
    • Korean Journal of Ecology and Environment
    • /
    • v.51 no.4
    • /
    • pp.299-310
    • /
    • 2018
  • Odor compounds (geosmin, 2-MIB) have been causing problems in the Bukhan River system, but the causative organisms have not been clearly identified. To evaluate the relationship between dynamics of microbial community and odor compounds, two times monthly monitoring of water quality and microbial community from the three serial lakes (Lake Uiam, Lake Cheongpyeong and Lake Paldang) in the Bukhan River system were conducted from April to October 2017. The odor compounds were analyzed by HS-SPME analysis method using GC/MS. Bacteria communities were identified at the class level by NGS analysis. Actinobacteria and Betaproteobacteria were dominant taxon in bacteria community of three serial lakes. In the case of phytoplankton communities showed that seasonal changes by Bacillariophyceae and Cryptophyceae in spring, Cyanobacteria in summer, and Bacillariophyceae and Cryptophyceae in autumn. Dominant species was Dolichospermum (=Anabaena), Microcystis and Pseudanabaena in Bukhan River system in all study period. At the same time the odors geosmin and 2-MIB were also detected at high concentration. There is a significant positive correlation between proportion of Actinobaceria and 2-MIB concentration (r=0.491, p<0.01). In addition, proportion of cyanobacteria showed a significant correlation of geosmin (r=0.381, p<0.05) and 2-MIB (r=0.386, p<0.05) concentration. In this study, odor compounds in the Bukhan River system are considered to be a direct relationship between with Actinobacteria and cyanobacteria.

Germination-Induced Changes in Flavoring Compound Profiles and Phytonutrient Contents in Scented Rice (향미벼의 발아 전 후 향기 성분 및 기능성 지질성분 함량의 변화)

  • Mahmud, MM Chayan;Das, Animesh Chandra;Lee, Seul-Ki;Kim, Tae-Hyeong;Oh, Yejin;Cho, Yoo-Hyun;Lee, Young-Sang
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.61 no.4
    • /
    • pp.242-250
    • /
    • 2016
  • Although rice has been cultivated as a major food crop for approximately 5,000 years, the interest of customers in 'scented rice' is a recent trend in the Korean market. As a part of developing a germinated scented rice variety, the newly bred scented rice variety 'Cheonjihyang-1 se' was germinated for 24 h, and changes in profiles of flavor-related volatiles, lipophilic phytonutrients, and fatty acids were investigated. The profiling of volatile compounds by using a headspace-gas chromatography-mass spectrometry (HS-GC-MS) revealed a total of 56 odor-active flavoring compounds; 52 at the pre-germination stage, 51 at the post-germination stage, and 47 common at both stages. The major flavoring compounds were nonanol and benzene, which constituted 11.5% and 6.6%, respectively, of the total peak area in pre-germinated rice, and 19.4% and 6.5%, respectively, in post-germinated rice. Germination induced an increase in 13 flavoring compounds, including 3,3,5-trimethylheptane and 1-pentadecene, which increased by 763 and 513%, respectively by germination. However, we observed a germination-induced decrease in most of the other flavoring compounds. Especially, the most important scented rice-specific popcorn-flavoring compound, 2-acetyl-1-pyrroline, showed 89% decrease due to germination. Furthermore, the germination of scented rice induced a decrease in the content of various phytonutrients. For example, the total contents of phytosterols, squalene, and tocols decreased from 207.97, 31.74, and $25.32{\mu}g\;g^{-1}$ at pre-germination stage down to 136.66, 25.12, and $17.76{\mu}g\;g^{-1}$, respectively at post-germination stage. The fatty acid compositions were also affected by germination. The composition of three major fatty acids, linoleic, oleic, and palmitic acids, increased from 36.6, 34.2, and 24.4%, respectively, at the pre-germination stage to 37.9, 36.9, and 20.7%, respectively, at the post-germination stage. All these results suggested significant changes in the flavor-related compounds and phytonutrients of the scented rice variety 'Cheonjihyang-1 se' during the process of germination, and subsequently the need for developing a more precise process of germination to enhance the flavor and nutritional quality of the germinated scented rice products.