• Title/Summary/Keyword: HS-SPME

Search Result 65, Processing Time 0.021 seconds

Analysis of volatile compounds in fermented seasoning pastes using edible insects by SPME-GC/MS (SPME-GC/MS 이용 식용곤충 페이스트형 발효조미료의 향기성분분석)

  • Cho, Joo-Hyoung;Zhao, Huiling;Chung, Chang-Ho
    • Korean Journal of Food Science and Technology
    • /
    • v.50 no.2
    • /
    • pp.152-164
    • /
    • 2018
  • Fermented seasoning pastes were prepared by Aspergillus oryzae and Bacillus subtilis using three edible insects, Tenebrio molitor larvae (TMP), Gryllus bimaculatus (GBP), and Bombyx mori pupa (SPP), with soybean (SBP) as a negative control. Volatile compounds were extracted by the headspace solid-phase microextraction (HS-SPME) method and confirmed by gas chromatograph-mass spectrometry (GC-MS). In total, 121 volatiles from four samples were identified and sub-grouped as 11 esters, 18 alcohols, 23 aldehydes, 5 acids, 10 pyrazines, 2 pyridines, 7 aromatic hydrocarbons, 10 ketones, 19 alkanes, 9 amides, 4 furans and 3 miscellaneous. TMP, GBP, SPP and SBP had 48, 54, 36, and 55 volatile compounds, respectively. Overall, 2,6-dimethylpyrazine and trimethylpyrazine were found by a high proportion in all samples. Tetramethylpyrazine, a main flavor of doenjang, a Korean fermented seasoning soybean paste, was identified as one of the major compounds in TMP, SPP, and SBP. SBP had benzaldehyde, hexanal, n-pentanal, and aldehydes and SPP with pyrazines.

Determination of benzene, toluene, ethylbenzene and o-xylene in bottled waters by headspace solid-phase microextraction and gas chromatography/mass spectrometry (HS-SPME-GC/MS를 이용한 먹는 샘물 중 벤젠, 톨루엔, 에칠벤젠, 자일렌의 정량)

  • Kim, Jong-Hun
    • Analytical Science and Technology
    • /
    • v.24 no.2
    • /
    • pp.119-126
    • /
    • 2011
  • Abstract: The amount of benzene, toluene, ethylbenzene, and o-xylene (BTEX) in 30 kinds of bottled waters purchased from market and 9 kinds of tap waters from home were determined using headspace solid phase microextraction (HS-SPME). The sample was stirred at 1200 RPM G for 4 min using a magnetic bar with $100\;{\mu}m$ PDMS as adsorbent for BTEX. Then it was desorbed from the fiber for 1 min at room temperature. Quantitation was achieved using standard calibration method. The limit of detection was determined as benzene 0.39 (${\pm}0.04$) ng/mL, toluene 0.08 (${\pm}0.04$) ng/mL, ethylbenzene 0.04 (${\pm}0.01$) ng/mL, and o-xylene 0.05 (${\pm}0.02$) ng/mL. Benzene and o-xylene were not detected in any samples, but toluene was detected in 11 samples, and ethylbenzene was detected just in 3 samples among 30 investigated bottled waters. The concentration range of investigated materials for toluene and o-xylene were $0.24({\pm}0.09)\sim2.95\;({\pm}0.08)\;ng/mL$, $0.08({\pm}0.06)\sim0.93({\pm}0.10)\;ng/mL$, respectively.

Development of an analytical method of organochlorine pesticides in human bloods using head space-solid phase microextraction coupled with gas chromatography/mass spectrometry (HS SPME-GC/MS를 이용한 혈액 중 유기염소계 농약의 분석법 개발)

  • Kang, Tae-Woo;Pyo, Hee-Soo;Hong, Jong-Ki
    • Analytical Science and Technology
    • /
    • v.21 no.4
    • /
    • pp.259-271
    • /
    • 2008
  • The analytical method of extracting compounds from human blood to examine accumulated organochlorine pesticides (OCPs) has been widely used the traditional liquid-liquid extraction (LLE) method and solid-phase extraction (SPE) method, yet these methods have certain limitations in purification and usafe of a large amount of sample. In order to overcome the se problems reside in these, solid-phase microextraction (SPME), known as a highly efficient extration method with less samples and relatively simple, was employed to collect 18 different kinds of OCPs in blood as extraction method in this study. To optimize extraction method, we examine various experimental SPME-parameters such as adsorption (fiber type, adsorption time, adsorption temperature, salting out effect), and desorption (desorption time, desorption temperature etc.). From the experimental results, the optimal conditions are as follows: fiber was polyacrylate with $85{\mu}m$, adsorption time was for 5 min, adsorption optimum temperature was at $280^{\circ}C$, and salting out effect was NaCl with 0.1 g. MDL, precision and accuracy was in the ranges of 0.05~0.20 ng/mL, 5.59~13.39%, respedively, and accuracy was -0.5% ~24.5% for all OCPs.

Measurement of Aldehydes in Replacement Liquids of Electronic Cigarettes by Headspace Gas Chromatography-mass Spectrometry

  • Lim, Hyun-Hee;Shin, Ho-Sang
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.9
    • /
    • pp.2691-2696
    • /
    • 2013
  • The electronic cigarette (E-cigarette) is a battery-powered device that aerosolizes nicotine so that it is readily delivered into the respiratory tract. The analytical data regarding the substances present in E-cigarettes are very limited. The aim of this study was to measure the concentration of aldehydes-formaldehyde (FA), acetaldehyde (AA) and, acrolein (AL)-in 225 replacement liquid brands from 17 E-cigarette shops sold in the Republic of Korea by headspace solid-phase micro extraction and gas chromatography-mass spectrometry (HS-SPME GC-MS). The concentration range of FA and AA was 0.02-10.09 mg/L (mean = 2.16 mg/L, detected in 207 of 225 samples) and 0.10-15.63 mg/L (mean = 4.98 mg/L, detected in all samples), respectively. AL was not detected in any of 225 replacement liquids. FA and AA were originally present in almost all replacement liquids of electronic cigarettes.

Dietary Intake and Venous Blood Concentration of Polycyclic Aromatic Hydrocarbons in Low-level Exposure (다환방향족탄화수소류의 음식물을 통한 섭취량과 혈중농도)

  • Moon, Chan-Seok
    • Journal of Environmental Health Sciences
    • /
    • v.38 no.5
    • /
    • pp.386-392
    • /
    • 2012
  • Objectives: This study aims to evaluate the blood concentrations and dietary intake for 24-hour food duplicate of low level polycyclic aromatic hydrocarbons (PAHs). Design: The geometric means of the blood concentrations and dietary intake of 16 PAHs in college student candidates were simply compared with instrumental detection. Methods: The concentrations of 16 PAHs in venous blood and 24-hour food duplicates were analyzed with head-space solid phase microextraction (HS-SPME) of gas chromatography-mass spectrometry. Results: Naphthalene, acenaphthylene, pyrene, benz(a)anthracene, chrysene, and acenaphthene among the 16 analyzed PAHs were simultaneously detected both in venous blood and 24-hour food duplicate samples. Conclusion: The main exposure source of the six PAHs is thought to be oral intake from food through low level non-occupational exposure.

Volatiles from the Maillard Reaction of L-Ascorbic Acid and L-Alanine at Different pHs

  • Yu, Ai-Nong;Deng, Qi-Hui
    • Food Science and Biotechnology
    • /
    • v.18 no.6
    • /
    • pp.1495-1499
    • /
    • 2009
  • The volatiles formed from the reactions of L-ascorbic acid with L-alanine at 5 different pH (5, 6, 7, 8, or 9) and $140{\pm}2^{\circ}C$ for 2 hr was performed using solid-phase microextraction-gas chromatography-mass spectrometry (SPME-GC-MS) analysis were identified to be 25 different kinds. The reaction between L-ascorbic acid and L-alanine led mainly to the formation of pyrazines. Many of these were alkylpyrazines, such as 3-ethyl-2,5-dimethylpyrazine, 2,5-dimethylpyrazine, 2-ethyl-5-methylpyrazine, 3,5-diethyl-2-methylpyrazine, methylpyrazine, 2-ethyl-6-methylpyrazine, and 2,3-diethyl-5-methylpyrazine, other compounds identified were furans, phenols, benzoquinones, 2,4,6-trimethylpyridine, and 2-methylbenzoxazole. The studies showed that furans, such as furfural and benzofuran were formed mainly at acidic pH. In contrast, higher pH values could promote the production of pyrazines.

Identification of the Volatile Compounds in Polyethylene Terephthalate Bottles and Determination of Their Migration Content into Mineral Water (PET 생수병 내 휘발성 물질의 동정 및 이행량 분석)

  • Jung, Eui Min;Kim, Dong Joo;Lee, Keun Taik
    • Korean Journal of Food Science and Technology
    • /
    • v.46 no.1
    • /
    • pp.19-24
    • /
    • 2014
  • This study was carried out to identify the volatile organic compounds (VOCs) in polyethylene terephthalate (PET) bottles and to determine the extent to which VOCs migrate into mineral water during the bottling process and storage. A greater amount of nonanal and decanal was generated from the PET bottles than from the PET preforms. Benzene, ethylbenzene, nonanal, and vinyl benzoate were identified from the PET bottles when the incubation temperature of the headspace solid-phase microextraction (HS-SPME) sampler was set to 60, 80, and $100^{\circ}C$. As the incubation temperature increased, the concentrations of nonanal, vinyl benzoate, and decanal increased significantly. When the high-density polyethylene (HDPE) PET bottle caps were extracted with dichloromethane, the level of Irgafos 168 was found to be $206{\pm}20.1\mu}g/g$. The concentration of 2,4-di-tert-butylphenol in water was $4.80{\pm}0.2{\mu}g/L$. Therefore, it is necessary to avoid exposing PET and HDPE resins to high temperatures during the manufacturing process and storage of bottled water.

Volatile Aromatic Compounds and Fermentation Properties of Fermented Milk with Buckwheat (메밀을 첨가한 발효유의 향기성분과 발효특성에 관한 연구)

  • Lee, Beom-Seon;Park, Seung-Kook
    • Korean Journal of Food Science and Technology
    • /
    • v.45 no.3
    • /
    • pp.267-273
    • /
    • 2013
  • We aimed to improve the flavor quality of plain yogurt, which is known to be sour and less desirable in flavor, varying concentrations of a buckwheat saccharification solution (BSS) were added to milk, followed by fermentation with commercially available mixed strains of lactic acid bacteria. Volatile compounds were analyzed using the gas chromatography-headspace-solid phase microextraction (GC-HS-SPME) method. Fermentation properties, including pH, titratable acidity, viable cells, viscosity, and color value were also measured. Eleven volatile compounds were identified with GC-MS. Of which, diacetyl, butanoic acid, and 2-heptanone proportionally increased as the levels of BSS increased. Undesirable compounds such as acetic acid and 2-butanone, decreased as BSS concentration increased. Fermentation properties were significantly altered with the addition of BSS. Our findings indicate that the flavor quality of plain yogurt can be improved by adding BSS for fermentation, with an additional health benefit from buckwheat.

Studies on the Effect of Low Winter Temperatures and Harvest Times on the Volatile Aroma Compounds in Green Teas (동절기 저온현상과 채엽시기에 따른 녹차의 향기성분에 대한 연구)

  • Ryu, Kyung-Heon;Lee, Hye-Jin;Park, Seung-Kook
    • Korean Journal of Food Science and Technology
    • /
    • v.44 no.4
    • /
    • pp.383-389
    • /
    • 2012
  • Green tea leaves grown in Jeju island were harvested at different times in 2010 and 2011. Green teas harvested in 2010 experienced higher effective accumulative temperature than green teas harvested in 2011. The free and bound volatile compounds in green tea were analyzed using headspace-solid phase microextraction gas chromatography (GC) and GC-mass spectrometry. All green teas contained the 6 major volatile compounds ${\alpha}$-methylbutanal, pentanal, (E)-2-hexen-1-ol, ${\beta}$-linalool, geraniol and ${\alpha}$-farnesene. After enzyme treatment, (Z)-3-hexen-1-ol, benzaldehyde, (Z)-3-hexenyl acetate, ${\beta}$-linalool and geraniol were increased in all green teas. (Z)-3-hexen-1-ol increased significantly in green tea harvested in 2010, and benzaldehyde increased widely in green tea harvested in 2011. However, the total volatile compounds in green teas harvested in 2011 were remarkably decreased in comparison to harvested in 2010. It was confirmed that free and bound volatile compounds in green tea are affected by low winter temperatures.

Examination about evaluation method of odor active compounds in evaporator by using condensed water (응축수를 이용한 냉각기의 냄새원인물질 평가방법 검토)

  • Kim, Sun-Hwa;Kim, Kyung-Hwan;Jung, Young-Rim;Kim, Man-Goo;Kim, Jae-Ho;Park, Ha-Young;Ji, Yong-Jun
    • Analytical Science and Technology
    • /
    • v.20 no.5
    • /
    • pp.361-369
    • /
    • 2007
  • Uncomfortable odor emitted from air conditioning system is the main cause of indoor air quality deterioration. To solve evaporator odor problems, odor active compounds, have to be identified then the quality of the product can be improved its quality. Because evaporator odor in exhaust gas has low odor intensity and discontinuity, it is very difficult to collect and analyze sample. In this study through the identification of odor compounds in condensed water, the evaluation of the eraporator was tested. Odor compounds were extracted from water by headspace-solid-phase microextraction (HS-SPME) method. The single odor was separated by GC/FID/Olfactometry (GC/FID/O) and odor active compounds were identified by GC/AED and GC/MS. Compared to air sample, result of sensory evaluation and the single odor compound appeared similarly. It was identified that odor active compounds have functional group containing oxygen such as alcohols and acids. Evaluation method of odor active compounds using condensed water in evaporator appeared effective on the side of simplicity of collection, low expanse and rapid analysis.