• Title/Summary/Keyword: HRTF (Head Related Transfer Function)

Search Result 88, Processing Time 0.025 seconds

Enhancement of the 3D Sound's Performance using Perceptual Characteristics and Loudness (지각 특성 및 라우드니스를 이용한 입체음향의 성능 개선)

  • Koo, Kyo-Sik;Cha, Hyung-Tai
    • Journal of Broadcast Engineering
    • /
    • v.16 no.5
    • /
    • pp.846-860
    • /
    • 2011
  • The binaural auditory system of human has ability to differentiate the direction and the distance of the sound sources by using the information which are inter-aural intensity difference(IID), inter-aural time difference(ITD) and/or the spectral shape difference(SSD). These information is generated from the acoustical transfer of a sound source to pinna, the outer ears. We can create a virtual sound system using the information which is called Head related transfer function(HRTF). However the performance of 3D sound is not always satisfactory because of non-individual characteristics of the HRTF. In this paper, we propose the algorithm that uses human's auditory characteristics for accurate perception. To achieve this, excitation energy of HRTF, global masking threshold and loudness are applied to the proposed algorithm. Informal listening test shows that the proposed method improves the sound localization characteristics much better than conventional methods.

Improvement of front-back sound localization characteristics in headphone-based 3D sound generation (헤드폰 기반의 입체음향 생성에서 앞/뒤 음상정위 특성 개선)

  • 김경훈;김시호;배건성;최송인;박만호
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.29 no.8C
    • /
    • pp.1142-1148
    • /
    • 2004
  • A binaural filtering method using HRTF DB is generally used to make the headphone-based 3D sound. But it can make some confusion between front and back directions or between up and down directions due to the non-individual HRTF depending on each listener. To reduce the confusion of sound image localization, we propose a new method to boost the spectral cue by modifying HRTF spectra with spectrum difference between front and back directions. Informal listening tests show that the proposed method improves the front-back sound localization characteristics much better than the conventional methods

Improvement of front/back Sound Localization Characteristics using Psychoacoustics of Head Related Transfer Function (머리전달함수의 심리음향적 특성을 이용한 전/후 음상정위 특성 개선)

  • Koo, Kyo-Sik;Cha, Hyung-Tai
    • Journal of Broadcast Engineering
    • /
    • v.11 no.4 s.33
    • /
    • pp.448-457
    • /
    • 2006
  • HRTF DB, including the information of the sounds which is arrived to our ears, is generally used to make a 3D sound. But it can decline some three-dimensional effects by the confusion between front and back directions due to the non-individual HRTF depending on each listener. In this paper, we propose a new method to use psychoacoustic theory that reduces the confusion of sound image localization. And we make use of an excitation energy by the sense of hearing. This method is brought HRTF spectrum characteristics into relief to draw out the energy ratio about the bark band. Informal listening tests show that the proposed method improves the front-back sound localization characteristics much better than the conventional methods.

A Range Dependent Structural HRTF Model for 3-D Sound Generation in Virtual Environments (가상현실 환경에서의 3차원 사운드 생성을 위한 거리 변화에 따른 구조적 머리전달함수 모델)

  • Lee, Young-Han;Kim, Hong-Kook
    • MALSORI
    • /
    • no.59
    • /
    • pp.89-99
    • /
    • 2006
  • This paper proposes a new structural head-related transfer function(HRTF) model to produce sounds in a virtual environment. The proposed HRTF model generates 3-D sounds by using a head model, a pinna model and the proposed distance model for azimuth, elevation, and distance that are three aspects for 3-D sounds, respectively. In particular, the proposed distance model consists of level normalization block distal region model, and proximal region model. To evaluate the performance of the proposed model, we setup an experimental procedure that each listener identifies a distance of 3-D sound sources that are generated by the proposed method with a predefined distance. It is shown from the tests that the proposed model provides an average distance error of $0.13{\sim}0.31$ meter when the sound source is generated as if it is 0.5 meter $\sim$ 2 meters apart from the listeners. This result is comparable to the average distance error of the human listening for the actual sound source.

  • PDF

HRTF Interpolation Using a Spherical Head Model (원형 머리 모델을 이용한 머리 전달 함수의 보간)

  • Lee, Ki-Seung;Lee, Seok-Pil
    • The Journal of the Acoustical Society of Korea
    • /
    • v.27 no.7
    • /
    • pp.333-341
    • /
    • 2008
  • In this paper, a new interpolation model for the head related transfer function (HRTF) was proposed. In the method herein, we assume that the impulse response of the HRTF for each azimuth angle is given by linear interpolation of the time-delayed neighboring impulse responses of HRTFs. The time delay of the HRTF for each azimuth angle is given by sum of the sound wave propagation time from the ears to the sound source, which can be estimated by using azimuth angle, the physical shape of the underlying head and the distance between the head and sound source, and the refinement time yielding the minimum mean square error. Moreover, in the proposed model, the interpolation intervals were not fixed but varied, which were determined by minimizing the total number of HRTFs while the synthesized signals have no perceptual difference from the original signals in terms of sound location. To validate the usefulness of the proposed interpolation model, the proposed model was applied to the several HRTFs that were obtained from one dummy-head and three human heads. We used the HRTFs that have 5 degree azimuth angle resolution at 0 degree elevation (horizontal plane). The experimental results showed that using only $30\sim40%$ of the original HRTFs were sufficient for producing the signals that have no audible differences from the original ones in terms of sound location.

Design of a Three Dimensional Audio System for Multicast Conferencing (멀티캐스트 화상회의를 위한 3-D 음향시스템 설계)

  • 김영오;고대식
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.25 no.1B
    • /
    • pp.71-76
    • /
    • 2000
  • On multimedia teleconferencing system existing a number of participants, face of the participants can beperceived by visual image. However, differentiation of each participant's voice and spaciousness sense are very hard since voice of all participants is processed with one dimensional data. In this paper, we implemented three dimensional audio rendering system using the HRTF(Head Related Transfer Function) and distance sense reproduction method and determined the optimal location of the participants for teleconferencing system. In the results of the listening test using elevation and azimuth angle, we showed that directional perception of the azimuth angles were better than that of the elevation angles. Specially, we showed that participant location using the HRTFS of the azimuth angle 10" , 90" , 270" and350" was efficient in teleconferencing system existing four participants. We also proposed that distance cue was used for enhancement of the reality and location of many participants more than five.ipants more than five.

  • PDF

A Study on the Creation of Stereoscopic Image and Three-Dimensional Sound in a Virtual Space (가상공간에서의 3차원 입체영상과 입체음향 생성에 관한 연구)

  • 김현라;이규동;임정빈
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2002.11a
    • /
    • pp.71-74
    • /
    • 2002
  • 이 연구에서는, 가상현실(virtual reality)분야에서 현실감 있는 가상공간을 구성하는데 중요한 요소인 3차원 입체영상과 입체음향을 하나의 메커니즘으로 구성하기 위한 알고리즘에 대해서 기술하였다 동기화 이중(Sync Doubling) 방식과 머리전달함수(Head Related Transfer Function: HRTF)를 이용하여 간단한 입체 게임을 구성한 후, 4명의 학생을 대상으로 실험한 결과, 3차원 입체영상은 모니터의 전후 방향으로 돌출되거나 함몰되는 현상을 나타냈으며, 영상에 따른 입체음향의 재생도 확인할 수 있었다.

  • PDF

Acoustic Echo Canceller for Synthetic Stereo Using HRTF (머리 전달 함수를 이용한 합성 스테레오 음향 반향 제거기)

  • 박장식;백주순;손경식
    • Proceedings of the Korea Multimedia Society Conference
    • /
    • 2002.05c
    • /
    • pp.149-153
    • /
    • 2002
  • In this brief, Acoustic echo cancellation scheme is proposed to enhance the presence of multiple participants of hands-free voice and video conference. Synthetic stereo using head related transfer function and the stereo echo cancellation scheme are proposed. It is shown that the proposed synthetic stereo echo cancellation scheme is well performed by computer simulation.

  • PDF

Acoustic Echo Canceler under 3-Dimensional Synthetic Stereo Environments (3차원 입체음향 환경에서의 음향반향제거기)

  • 성창숙;김현태;박장식;손경식
    • Proceedings of the Korea Multimedia Society Conference
    • /
    • 2003.05b
    • /
    • pp.419-422
    • /
    • 2003
  • 본 논문에서는 다자간 화상회의 시스템에서 합성 입체 음향을 재현하는 방법과 음향반향제거 방법을 제안한다. 합성 입체 음향은 HRTF(head related transfer function)을 이용하여 재현하고 합성 입체 음향반향제거를 위하여 AP(affine projection) 알고리즘을 이용하여 3차원 입체음향반향 제거 방법을 제안한다. 컴퓨터 시뮬레이션 결과 제안하는 합성 입체 음향반향제거기가 효과적으로 반향을 제거할 수 있음을 보인다.

  • PDF

3D Sound Diffusion Control Using Wavelets (웨이블릿을 이용한 입체음향의 확산감 제어)

  • 김익형;정의필
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.4 no.4
    • /
    • pp.23-29
    • /
    • 2003
  • In this paper, we propose an idea for the improved 3-D sound system using conventional stereo headphones to obtain a better sound diffusion from the mono-sound recorded at an anechoic chamber. We use the HRTF(Head Related Transfer Function) for the sound localization and the wavelet filter bank with time delay for the sound diffusion. And we test the modified HRTF with the various sampling rate. We investigate the effects of the 3-D sound depending on the length of time delay at lowest frequency band. Also the correlation coefficient of the signals between the left channel and the right channel is measured to identify the sound diffusion. At last we obtain the diffusion sound using Cool Edit for reverberation.

  • PDF