• Title/Summary/Keyword: HQSAR (Hologram quantitative structure activity relationship)

Search Result 16, Processing Time 0.022 seconds

Docking and QSAR studies of PARP-1 Inhibitors (PARP-1 억제제의 Docking 및 QSAR 연구)

  • Kim, Hye-Jung;Cho, Seung-Joo
    • Proceedings of the Korean Society for Bioinformatics Conference
    • /
    • 2004.11a
    • /
    • pp.210-218
    • /
    • 2004
  • Poly(ADP-ribose)polymerase-1 (PARP-1) is a nuclear enzyme involved in various physical functions related to genomic repair, and PARP inhibitors have therapeutic application in a variety of neurological diseases. Docking and the QSAR (quantitative structure-activity relationships) studies for 52 PARP-1 inhibitors were conducted using FlexX algorithm, comparative molecular field analysis (CoMFA), and hologram quantitative structure-activity relationship analysis (HQSAR). The resultant FlexX model showed a reasonable correlation (r$^{2}$ = 0.701) between predicted activity and observed activity. Partial least squares analysis produced statistically significant models with q$^{2}$ values of 0.795 (SDEP=0.690, r$^{2}$=0.940, s=0.367) and 0.796 (SDEP=0.678, r$^{2}$ = 0.919, s=0.427) for CoMFA and HQSAR, respectively. The models for the entire inhibitor set were validated by prediction test and scrambling in both QSAR methods. In this work, combination of docking, CoMFA with 3D descriptors and HQSAR based on molecular fragments provided an improved understanding in the interaction between the inhibitors and the PARP. This can be utilized for virtual screening to design novel PARP-1 inhibitors.

  • PDF

HQSAR Study of Microsomal Prostaglandin E2 Synthase (mPGES-1) Inhibitors

  • San Juan, Amor A.;Cho, Seung-Joo;Cho, Hoon
    • Bulletin of the Korean Chemical Society
    • /
    • v.27 no.10
    • /
    • pp.1531-1536
    • /
    • 2006
  • Microsomal prostaglandin $E_2$ synthase (mPGES-1) is an enzyme that is associated with inflammation, pain, fever and cancer. Hologram quantitative structure activity relationship (HQSAR) was conducted on the series of MK-886 compounds acting as mPGES-1 inhibitors. A training set with 24 compounds was used to establish the HQSAR model. The best model was chosen based on the cross-validated correlation coefficient ($q^2$=0.884) and the correlation coefficient($r^2$=0.976). The model was utilized to predict the activity of the eight-test set of compounds giving the predictive $r^2$ value of 0.845. The descriptors of the model are based on fragment distinction (atoms, bond and connectivity) and fragment size (2-5 atoms). The atomic contribution maps generated from HQSAR were useful in identifying the important structural features responsible for the inhibitory activity of MK-886 inhibitors. Based on the generated model, the presence of hydrophobic biphenyl group seems to enhance inhibition of mPGES-1 that is in agreement with the previous experiments. In addition, it seems important for a halogen to be substituted to the biphenyl ring and for an acyl group to be attached to the indole moiety for enhanced activity.

Hologram Based QSAR Analysis of CXCR-2 Inhibitors

  • Sathya., B
    • Journal of Integrative Natural Science
    • /
    • v.10 no.2
    • /
    • pp.78-84
    • /
    • 2017
  • CXC chemokine receptor 2 (CXCR2) is a prominent chemokine receptor on neutrophils. CXCR2 antagonist may reduce the neutrophil chemotaxis and alter the inflammatory response because the neutrophilic inflammation in the lung diseases is found to be largely regulated through CXCR2 receptor. Hence, in the present study, Hologram based Quantitative Structure Activity Relationship Study was performed on a series of CXCR2 antagonist named pyrimidine-5-carbonitrile-6-alkyl derivatives. The best HQSAR model was obtained using atoms, bonds, and chirality as fragment distinction parameter using hologram length 151 and 6 components with fragment size of minimum 4 and maximum 7. Significant cross-validated correlation coefficient ($q^2=0.774$) and non cross-validated correlation coefficients ($r^2=0.977$) were obtained. The model was then used to evaluate the six external test compounds and its $r^2_{pred}$ was found to be 0.614. Contribution map show that presence of cyclopropyl ring and its bulkier substituent's makes big contributions for improving the biological activities of the compounds. We hope that our HQSAR model and analysis will be helpful for future design of novel and structurally related CXCR2 antagonists.

Hologram Based QSAR Analysis of Caspase-3 Inhibitors

  • Sathya., B
    • Journal of Integrative Natural Science
    • /
    • v.11 no.2
    • /
    • pp.93-100
    • /
    • 2018
  • Caspases, a family of cysteinyl aspartate-specific proteases plays a central role in the regulation and the execution of apoptotic cell death. Caspase-3 has been proven to be an effective target for reducing the amount of cellular and tissue damage because the activation of caspases-3 stimulates a signalling pathway that ultimately leads to the death of the cell. In this study, Hologram based Quantitative Structure Activity Relationship (HQSAR) models was generated on a series of Caspase-3 inhibitors named 3, 4-dihydropyrimidoindolones derivatives. The best HQSAR model was obtained using atoms, bonds, and hydrogen atoms (A/B/H) as fragment distinction parameter using hologram length 61 and 3 components with fragment size of minimum 5 and maximum 8. Significant cross-validated correlation coefficient ($q^2=0.684$) and non cross-validated correlation coefficients ($r^2=0.754$) were obtained. The model was then used to evaluate the eight external test compounds and its $r^2_{pred}$ was found to be 0.559. Contribution map show that presence of pyrrolidine sulfonamide ring and its bulkier substituent's makes big contributions for improving the biological activities of the compounds.

HQSAR Study of Tricyclic Azepine Derivatives as an EGFR (Epidermal Growth Factor Receptor) Inhibitors

  • Chung, Hwan-Won;Lee, Kyu-Whan;Oh, Jung-Soo;Cho, Seung-Joo
    • Molecular & Cellular Toxicology
    • /
    • v.3 no.3
    • /
    • pp.159-164
    • /
    • 2007
  • Stimulation of epidermal growth factor receptor (EGFR) is essential in signaling pathway of tumor cells. Thus, EGFR has intensely studied as an anticancer target. We developed hologram quantitative structure activity relationship (HQSAR) models for data set which consists of tricyclic azepine derivatives showing inhibitory activities for EGFR. The optimal HQSAR model was generated with fragment size of 6 to 7 while differentiating fragments having different atom and connectivity. The model showed cross-validated $q^2$ value of 0.61 and non-cross-validated $r^2$ value of 0.93. When the model was validated with an external set excluding one outlier, it gave predictive $r^2$ value of 0.43. The contribution maps generated from this model were used to interpret the atomic contribution of each atom to the overall inhibition activity. This can be used to find more efficient EGFR inhibitors.

The Search of Pig Pheromonal Odorants for Biostimulation Control System Technologies: Ⅱ. Holographic QSAR Model for Binding Affinities between Ligands of Volatile Odorants Molecules and Porcine Odorant Binding Protein (pOBP) (생물학적 자극 통제 수단으로 활용하기 위한 돼지 페로몬성 냄새 물질의 탐색: Ⅱ. 휘발성 냄새분자의 리간드와 Porcine Odorant Binding Protein (pOBP) 사이의 결합 친화력에 관한 홀로그래피적 QSAR 모델)

  • Sung N. D.;Park C. S.;Choi Y. S.;Myung P. K.
    • Reproductive and Developmental Biology
    • /
    • v.29 no.1
    • /
    • pp.43-48
    • /
    • 2005
  • To search of a new porcine pheromonal odorants for biostimulation control system technologies to offer a potentially useful and practical way to improve reproductive efficiency in livestock species, the holographic quantitative structure activity relationship (HQSAR) model between odorants, 2-phenoxytetrahydrofurane (A), 2-cyclohexyl-oxytetrahydrofurane (B), derivatives and binding affinity constants (p[Od.]/sub 50/) for porcine odorant-binding protein (pOBP) as receptor of pig pheromones were derivated and disscused. The binding affinity constants of cyclohexyl substituents (A) for pOBP were higher (A>B) than that of phenyl substituents (B). It was revealed that the optimum HQSAR model XI using PLS analyses had a fragment length (5∼8) with chirality at 5 components and hologram length 97 bin, which had a cross-validated q²(predictablities) of 0.916, and a conventional correlation coefficient r² (fitness) of 0.988, respectively. From the atomic contribution, the C3 and C5 atom in 2-oxyfuryl group contributed to binding affinity constants, whereas the central carbon atom in tert-butyl group on the cyclohexyl ring and the C4 atom of furyl group parts showed no contribution.