• 제목/요약/키워드: HPLC-analysis

검색결과 2,645건 처리시간 0.033초

Improved Phosphotyrosine Analysis by TLC and HPLC

  • Song, Young-Me;Yoo, Gyurng-Soo;Lee, Seung-Ki;Choi, Jung-Kap
    • Archives of Pharmacal Research
    • /
    • 제16권2호
    • /
    • pp.99-103
    • /
    • 1993
  • We describe here the conditions of thin layer chromatography (TLC) and high pressures liquid chromatography (HPLC) to improve the analytical method of phosphotyrosine (p-Tyr) in biological sample. TLC was performed on silica plate with the mixture of propanol and water (2.1 : 1 v/v) as a mobile phase and $R_1$ values were 0.42, 0.39 and 0.33 for phosphotyrosine, phosphothreonine and phosphoserine, respectively. HPLC was performed on $NH_2$ column with a mobile phase of potassium biphosphate solution by UV deterction at 192 nm. The optimum condition of HPLC was obtained at 0.01 M, pH 4.5 with a clear separation within 12 min. These procedures have been applied to the analysis of phosphotyrosine obtained from tyrosine-phosphorylated enolase. Both TLC and HPLC methods were suitable to analyze tyrosine-phosphorylated protein without being affected by contaminants from hydrolysates.

  • PDF

광합성 색소의 HPLC 분석을 위한 여과지 분쇄 효과 평가 (Evaluation of Grinding Effects on the Extraction of Photosynthetic Pigments for HPLC Analysis)

  • 장수진;박미옥
    • 한국해양학회지:바다
    • /
    • 제20권2호
    • /
    • pp.71-77
    • /
    • 2015
  • High-Performance Liquid Chromatography (HPLC) 분석방법은 식물플랑크톤의 생물량 및 일차생산력을 추정하기 위한 지시자로서 chlorophyll a 농도를 측정하고 carotenoids의 종류를 파악해 종조성을 확인하기 위해 널리 이용되고 있다. 그러나 대량시료의 분석에 요구되는 시료 전처리 과정 중 여과지 분쇄는 상당한 시간과 숙련이 요구된다. 본 연구에서는 엽록소 및 carotenoids의 정량분석에 대한 여과지 분쇄의 영향을 파악하고자 동해 남서부 해역의 시료를 이용해 여과지 분쇄 전후의 광합성 색소 농도를 비교 평가했다. HPLC 분석에서 여과지 분쇄 생략 시 Chl a의 경우 평균 45% 과소평가되었다. 또한 pico, nano 크기 식물플랑크톤의 지표색소인 Zeaxanthin, 19'-butanoyloxyfucoxanthin, 19'-hexanoyloxyfucoxanthin는 최대 77~85% 과소평가되었다. 크기가 작은 식물플랑크톤의 경우 여과지 분쇄가 생략될 경우 불완전한 추출로 지표색소의 농도가 실제보다 저평가될 가능성이 크다는 것을 확인하였다. 따라서 HPLC 분석에서 여과지 분쇄 생략 시 Chl a 뿐 아니라 carotenoids 또한 과소평가 되므로 모든 경우에서 여과지 분쇄 과정이 반드시 필요하다고 판단된다.

마비성패류독소 분석을 위한 Precolumn HPLC Oxidation 법의 유효성 검증 (Validation of Precolumn HPLC Oxidation Method for Analysis of Paralytic Shellfish Poison)

  • 목종수;송기철;이가정;김지회
    • 한국수산과학회지
    • /
    • 제46권2호
    • /
    • pp.147-153
    • /
    • 2013
  • To prevent paralytic shellfish poisoning (PSP) due to the consumption of shellfish contaminated with PSP toxins, the quantitative analysis of these toxins is very crucial. The AOAC International mouse bioassay (MBA) has been used widely for the routine monitoring of PSP toxins for more than 50 years. However, this method has low sensitivity and high limit of quantification (LOQ) and interferences from other components in the extract, and it cannot determine toxic profiles. Ethical problems also exist with the continued use of this live mouse assay. To establish an alternative method to the MBA used for PSP toxins analysis, we attempted to optimize the analysis conditions of a precolumn high-performance liquid chromatography (HPLC) oxidation method and succeeded in validating its accuracy and precision in quantifying PSP toxins. A clear peak and the isolation of PSP toxins were obtained by injecting the working standards of Certified Reference Materials using HPLC. The LOQ of the precolumn HPLC oxidation method for PSP toxins was about $0.1002{\mu}g/g$, which represented an approximately fourfold improvement in detection capability versus the AOAC MBA. The intra-accuracy and precision for PSP toxins in oysters were 77.0-103.3% and 2.0-5.7%, respectively, while the respective inter-accuracy and precision were 77.3-100.7% and 2.4-6.0%. The mean recoveries of PSP toxins from oysters were 75.2-112.1%. The results of a comparison study showed good correlation between the results of the precolumn HPLC oxidation method and those of MBA, with a correlation factor of 0.9291 for mussels. The precolumn HPLC oxidation method may be used as an alternative to, or supplementary method with, MBA to monitor the occurrence of PSP toxins and to analyze the profiles of these toxins in shellfish.

Rapid and Simultaneous Determination of Ginsenosides Rb1, Rb2, Rc and Re in Korean Red Ginseng Extract by HPLC using Mass/Mass Spectrometry and UV Detection

  • Kwon, Young-Min;Lee, Sung-Dong;Kang, Hyun-Sook;Cho, Mu-Gung;Hong, Soon-Sun;Park, Chae-Kyu;Lee, Jong-Tae;Jeon, Byeong-Seon;Ko, Sung-Ryong;Shon, Hyun-Joo;Choi, Dal-Woong
    • Journal of Ginseng Research
    • /
    • 제32권4호
    • /
    • pp.390-396
    • /
    • 2008
  • For evaluating the quality of ginseng, simple and fast analysis methods are needed to determine the ginsenoside content of the ginseng products. The aim of this study was therefore to optimize conditions for fast analysis of the ginsenosides, the active ingredients in extracts of Korean red ginseng. When tandem HPLC mass spectrometry (HPLC-MS/MS) was used, four forms of ginsenoside, Rb1, Rb2, Rc, and Re, were readily separated in seven minutes using a gradient mobile phase (acetonitrile and water containing acetic acid). This is the shortest separation time reported among the studies of major ginsenoside analysis. When gradient HPLC with UV detection was used, the detection limit was high, but separation of these four ginsenosides required 25 minutes using acetonitrile and water containing formic acid as a mobile phase. HPLC-MS/MS was able to separate ginsenoside Rg1 easily regardless of the mobile phase condition, but the HPLC-UV could not separate Rg1 because acetonitrile concentration in the mobile phase had to be maintained below 20%. Ginsenoside peaks were clearer and had more sensitive detection limits when Korean red ginseng extract was analyzed by the HPLC-MS/MS, but the UV detection was useful for chromatographic fingerprinting of all four major ginsenosides of the extract: Rb1, Rb2, Rc, and Re. Extracts were found to contain 2.17 mg, 1.51 mg, 1.29 mg, and 0.46 mg of ginsenoside Rb1, Rb2, Rc, Re, respectively, per gram weight. The ratios of each ginsenoside in the extracts were 1.0 : 0.7 : 0.6 : 0.2, respectively. Taken together, the results indicate that HPLC-MS/MS spectrometry could be the most useful method for rapid analysis of even small amounts of major ginsenosides, while HPLC with UV detection could also be used for rapid analysis of major ginsenosides and for quality control of ginseng products.

Chiral Drugs의 광학분할을 위한 HPLC Column의 응용 (The Application of Chiral HPLC Columns for Enantiomer Separation of Chiral Drugs)

  • 이원재
    • 약학회지
    • /
    • 제53권2호
    • /
    • pp.60-68
    • /
    • 2009
  • In terms of chiral issue, two enantiomers of chiral drugs often differ significantly in their pharmacological, toxicological and pharmacokinetic profile. Chiral switches of racemic drugs have been redeveloped as single enantiomers. Several chiral resolution techniques in chirotechnology are introduced and the most used chiral HPLC chromatographic method among several chiral analysis techniques is described with its several advantages. Several types of chiral HPLC columns derived from their chiral selectors are discussed with their property and applications for enantiomer separation.

HPLC 및 GC에 의한 농약분석에서 전처리에 대한 연구 (Studies on Pretreatment for Analysis of Pesticides by Using HPLC and GC)

  • 오보영;배준현;강준길;김연두
    • 대한화학회지
    • /
    • 제43권6호
    • /
    • pp.663-669
    • /
    • 1999
  • HPLC/UV 및 GC/FPD 법을 사용하여 환경수에 존재하는 Diazinon, EPN, Fenitrothion, Phosalon 및 Phosmet 등 5종의 유기인계 잔류농약을 분석하였다. 전처리 과정으로 고체상추출법(SPE)과 용매추출법(LLE)을 각각 적용한 결과, 회수율과 재현성에 있어, HPLC/UV에서는 용매추출법(LLE)보다 고체상추출법(SPE)이 더 우수하였고, GC/FPD에서는 고체상추출법(SPE)보다 용매추출법(LLE)이 더 우수하였다. 또 수돗물 및 하천수(와룡천)에 일정량의 유기인계 농약을 가하여 만든 합성시료중 각 성분을 분석한 결과, SPE-HPLC/UV 법에서는 회수율이 101%, % RSD는 4.3∼8.7이었고, LLE-GC/FPD 법에서는 회수율이 100%, % RSD는 3.2∼9.5이었다. 이 결과는 두 방법 모두 유기인계 잔류농약 분석에 이용할 수 있는 우수한 방법임을 제시하고 있다.

  • PDF

지모의 유효성분 분리 및 HPLC 정량 분석 (Isolation and HPLC Analysis of Timosaponin A III from Rhizomes of Anemarrhena asphodeloides $B_{UNGE}$)

  • 김금숙;박창기;성재덕;김현태;한상익;곽용호
    • 한국약용작물학회지
    • /
    • 제7권1호
    • /
    • pp.45-50
    • /
    • 1999
  • 지모의 고품질 품종 육성 및 재배법 개선과 유통중인 생약으로서의 안전성을 위한 품질 평가 기준을 설정하기 위해 지모의 지표성분의 HPLC 분석법을 확립하고자 하였다. 먼저 지모의 유효성분을 분리하고 지표성분화 한 후 HPLC 분석 정량법을 검토하므로써 지모의 품질 분석법을 구명한 결과는 다음과 같다. 지모를 MeOH로 대량 추출하여 계통 추출법으로 용매분배 후 조사포닌 분획인 n-BuOH ext.를 얻었으며 이 n-BuOH ext. 을 silica gel 컬럼 크로마토그래피를 수행하여 화합물 1를 순수 분리 정제하였다. 화합물 1의 $^1H$, $^{13}C$ NMR spectra 등을 검토한 결과 화합물 1은 지모의 주요 약효성분인 timosaponin A III로 확인되었다. Timosaponin A III은 지모의 주요 성분이자 혈당 강하작용과 항암활성 등의 주요 약효를 보이는 성분으로 지모의 품질 평가 기준으로서 지모의 지표성분으로 하기에 적합하였다. Timosaponin A III의 HPLC 분석법 확립을 위해 ELSD 검출기 가 사용되었으며 ODS계 컬럼을 사용하고 60% acetonitrile를 이동상으로 하여 0.9ml/min의 유속으로 분석을 한 것이 가장 적절한 timosaponin AIII의 HPLC 분석 조건이었다. Timosaponin AIII의 HPLC 분석을 위한 지모 시료의 추출조건 검토에서는 1g 분말시료를 80% MeOH를 추출용매로 할 때 $80^{\circ}C$에서 총 2회 환류 추출하는 것이 성분의 총 회수율을 가장 높이는 추출조건이었다.

  • PDF

Quantitative Analyses for the Quality Evaluation of Salviae Miltiorrhizae Radix by HPLC

  • Fang, Zhe;Moon, Dong-Cheul;Son, Kun-Ho;Son, Jong-Keun;Min, Byung-Sun;Woo, Mi-Hee
    • Natural Product Sciences
    • /
    • 제16권4호
    • /
    • pp.251-258
    • /
    • 2010
  • In this study, quantitative analysis for the quality evaluation of Salviae Miltiorrhizae Radix using HPLC/UV was developed. For quantitative analysis, six major bioactive compounds were determined. The separation conditions employed for HPLC/UV were optimized using ODS $C_{18}$ column ($250{\times}4.6\;mm$, $5\;{\mu}m$) with gradient condition of A (1% formic acid in $H_2O$) and B (acetonitrile : methanol : formic acid = 100 : 75 : 1) as the mobile phase at a flow rate of 1.0 mL/min and a detection wavelength of 280 nm. These methods were fully validated with respect to the linearity, accuracy, precision and recovery. The HPLC/UV method was applied successfully to the quantification of six major compounds in the Salviae Miltiorrhizae Radix. The results indicate that the established HPLC/UV method is suitable for the quantitative analysis.

정량분석을 통한 Eleutherococcus species의 HPLC 분석법 검증과 표준화 (Standardization of Eleutherococcus species and HPLC Method Validation for Quantitative Analysis)

  • 송미경;김미연;김호철
    • 대한본초학회지
    • /
    • 제26권1호
    • /
    • pp.103-110
    • /
    • 2011
  • Objective : For the standardization and quality control of eleutheroside E in Eleutherococcus species, HPLC analysis was performed and eleutherosdie E content was compared in 23 kinds of Eleutherococcus species collected from Korea and China. Methods : The content of eleutheroside E in stem bark of Eleutherococcus species collected from Korea and China were analyzed by HPLC. 0.5% phosphoric acid and acetonitrile was used as mobile solvent. Validation of HPLC analysis method was confirmed by analyzing specificity, linearity, precision and accuracy following ICH guideline. Results : Content of eleutheroside E was determined to be 1.0-1.6% and 0.5-0.8% in Korean and Chinese E. senticosus, respectively. Content of eleutheroside E in E. sessiliflorus was 0.7-1.1% and 0.2-0.4% respectively in Korean and Chinese origin. All calibration curves showed good linear regression. The method showed good precision and accuracy with intra-day and inter-day variations of 0.880-3.442% (RSD) and 0.606-3.328% (RSD), respectively, and average recovery was of 0.141-1.363% (RSD), for the eleutheroside E analyzed. Conclusion : These results might be used to establish a criterion of eleutheroside E in Eleutherococcus species.

Carotenoid의 생리활성과 함량분석 (Biological Activities and Analysis of Carotenoids in Plants)

  • 김정봉;하선화;이종렬;김행훈;윤상홍;김용환
    • 한국작물학회지
    • /
    • 제48권
    • /
    • pp.72-78
    • /
    • 2003
  • Carotenoids are the major pigment of pepper (Capsicum annuum) and tomato (Lycopersicon esulentum) which are very important foods in Korea. However the analysis of carotenoids is quite complicated because of their diversity and the presence of cis-trans isomeric forms of these compounds. The objective of this review is to collect the achievements on the field of the chromatographic separation of carotenoids in food and some vegetables, to describe and critically evaluate the techniques, And to compare the benefits and shortcomings of the various chromatographic methods such as adsorption and reversed-phase HPLC and thin-layer chromatography. HPLC equipped with ultra-violet or photodiode array detection is most often employed in routine use for the analysis of carotenoids. Here, the method to analyze carotenoids by HPLC separation after solvent extration and purification from pepper powder samples done in our laboratory is also mentioned.