• Title/Summary/Keyword: HPLC(high performance liquid chromatography)

Search Result 1,423, Processing Time 0.026 seconds

N-oleoyl-D-erythro-sphingosine-based Analysis of Ceramide by High Performance Liquid Chromatography and Its Application to Determination in Diverse Biological Samples

  • Lee, Youn-Sun;Choi, Heon-Kyo;Yoo, Jae-Myung;Choi, Kyong-Mi;Lee, Yong-Moon;Oh, Sei-Kwan;Kim, Tack-Joong;Yun, Yeo-Pyo;Hong, Jin-Tae;Okino, Nozomu;Ito, Makoto;Yoo, Hwan-Soo
    • Molecular & Cellular Toxicology
    • /
    • v.3 no.4
    • /
    • pp.273-281
    • /
    • 2007
  • Ceramide is involved in cell death as a lipid mediator of stress responses. In this study, we developed an improved method of ceramide quantification based on added synthetic ceramide and thin layer chromatography (TLC) separation, and applied to biological samples. Lipids were extracted from samples spiked with N-oleoyl-D-erythro-sphingosine ($C_{17}$ ceramide) as an internal standard. Ceramide was resolved by TLC, complexed with fatty-acidfree bovine serum albumin (BSA), and deacylated by ceramidase (CDase). The released sphingosine was derivatized with o-phthalaldehyde (OPA) and measured by high performance liquid chromatography (HPLC). The limit of detection for ceramide was about 1-2 pmol and the lower limit of quantification was 5 pmol. Ceramide recovery was approximately 86-93%. Ceramide concentrations were determined in biological samples including cultured cells, mouse tissues, and mouse and human plasma. TLC separation of ceramide provides HPLC chromatogram with a clean background without any interfering peaks and the enhanced solubility of ceramide by BSAceramide complex leads to the increased deacylation of ceramide. The use of an internal standard for the determination of ceramide concentration in these samples provides an accurate and reproducible analytical method, and this method can be applicable to diverse biological samples.

Compositional Characterization and Colorant Identification of Omija (Schizandra chinensis) Fruit Extract

  • Kim, Seol-Hee;Lee, Byung-Hoo;Kim, Jong-Chul;Choi, Sung-Seen;Kim, Gwe-Won;Joo, Mi-Hyun;Yoo, Sang-Ho
    • Food Science and Biotechnology
    • /
    • v.17 no.4
    • /
    • pp.787-793
    • /
    • 2008
  • A major polyphenolic compound extracted from omija (Schisandra chinensis) fruit was structurally identified, and its composition of major nutrients was investigated as well in this study. A dominating high performance liquid chromatography (HPLC) peak of water-extracted anthocyanin represented 94.1% of total absorbable compounds at 520 nm, which was further identified with HPLC-mass spectrometry (MS). As a result, mass-to-charge ratio (m/z) of the predominant anthocyanin was determined to be 727, and it was identical to molecular mass of cyanidin-3-xylosylrutinoside (Cya-3-O-xylrut). This is the first report that colorant of omija is predominantly composed of Cya-3-O-xylrut. Omija fruit contained exclusively 3 types of monosaccharide such as glucosc (0.68 g), galactose (0.01 g), and fructose (0.52 g) per 100 g of fruits. Several organic acids, citric (3.29 g), malic (1.4 g), acetic (0.4 g), and succinic acids (0.36 g) per 100 g of fruits, were detected by high performance anion exchange chromatography (HPAEC) analysis. During the compositional analysis of tree amino acid by HPLC, it was noticed that omija fruit contained substantial amount (0.01 g/100 g of fruits) of $\gamma$-amino butyric acid (GABA).

Isolation of Angiotensin Converting Enzyme Inhibitor from Doenjang (전통된장으로부터 Angiotensin Converting Enzyme 저해물질의 분리)

  • Kim, Seung-Ho;Lee, Yun-Jin;Kwon, Dae-Young
    • Korean Journal of Food Science and Technology
    • /
    • v.31 no.3
    • /
    • pp.848-854
    • /
    • 1999
  • Inhibitory compounds of angiotensin converting enzyme (ACE) were separated from Doenjang (traditional Korean fermented soybean paste). Water extracts from Doenjang which showed ACE inhibitory activity were separated with gel permeation chromatography (GPC), in which two fractions with high ACE inhibitory activities were obtained. The first fraction from GPC was further isolated by semi-preparative reverse phase preparative-HPLC (high performance liquid chromatography) and 2-dimensional electrophoresis/thin layer chromatography (TLC). The purified spot had molecular weight of 759 daltons and ninhydrin-positive non-peptide. The second fraction from GPC was also further isolated by semi-preparative reverse phase HPLC and $NH_2-column$ HPLC. One fraction with high ACE inhibitory activity was purified and characterized. Molecular weight of this fraction by LC-MS was 272.34 daltons. The active fraction was identified as Arg-Pro with ACE $IC_{50}$ of $92\;{\mu}M$.

  • PDF

NEAR INFRARED TRANSFLECTANCE SPECTROSCOPY (NIRS) IN PHYTOCHEMISTRY

  • Huck, C.W.;W.Guggenbichler;Bonn, G.K.
    • Proceedings of the Korean Society of Near Infrared Spectroscopy Conference
    • /
    • 2001.06a
    • /
    • pp.3114-3114
    • /
    • 2001
  • During the last years phytochemistry and phytopharmaceutical applications have developed rapidly and so there exists a high demand for faster and more efficient analysis techniques. Therefore we have established a near infrared transflectance spectroscopy (NIRS) method that allows a qualitative and quantitative determination of new polyphenolic pharmacological active leading compounds within a few seconds. As the NIR spectrometer has to be calibrated the compound of interest has at first to be characterized by using one or other a combination of chromatographic or electrophoretic separation techniques such as thin layer chromatography (TLC), high performance liquid chromatography (HPLC), capillary electrophoresis (CE), gas chromatography (GC) and capillary electrochromatography (CEC). Both structural elucidation and quantitative analysis of the phenolic compound is possible by direct coupling of the mentioned separation methods with a mass spectrometer (GC-MS, LC-MS/MS, CE-MS, CEC-MS) and a NMR spectrometer (LC-NMR). Furthermore the compound has to be isolated (NPLC, MPLC, prep. TLC, prep. HPLC) and its structure elucidated by spectroscopic techniques (UV, IR, HR-MS, NMR) and chemical synthesis. After that HPLC can be used to provide the reference data for the calibration step of the near infrared spectrometer. The NIRS calibration step is time consuming, which is compensated by short analysis times. After validation of the established NIRS method it is possible to determine the polyphenolic compound within seconds which allows to raise the efficiency in quality control and to reduce costs especially in the phytopharmaceutical industry.

  • PDF

Determination of bioavailability of tolperisone HCI by HPLC

  • Yang, Sang-In;Choi, Sun-Hee;Lee, Seung-Jin;Jang, Choon-Gon;Lee, Seok-Yong
    • Proceedings of the PSK Conference
    • /
    • 2002.10a
    • /
    • pp.241.1-241.1
    • /
    • 2002
  • Tolperisone hydrochloride is used as a muscle relaxant. Very few assay methods of tolperisone were reported. such as potentiometry. spectrophotometry and high performance thin layer chromatography. In addition. there is no report related to HPLC method to determine the tolperisone level in biological sample. In this study, A very sensitive reverse phase high performance liquid chromatographic (RP-HPLC) method for the determination of tolperisone HCI in plasma has been developed. (omitted)

  • PDF

Determination of nadolol enantiomers in human plasma using a coupled achiral-chiral high-performance liquid chromatography method

  • Lee, Seung-Beom;Pham, Thuy-Vy;Mai, Xuan-Lan;Le, Thi-Anh-Tuyet;Nguyen, Thi-Ngoc-Van;Kang, Jong-Seong;Mar, Woongchon;Kim, Kyeong Ho
    • Analytical Science and Technology
    • /
    • v.33 no.2
    • /
    • pp.59-67
    • /
    • 2020
  • Nadolol is a β-blocker drug, which effectively manages hypertension and angina pectoris. Its chemical structure allows the formation of four possible stereoisomers. A coupled column high-performance liquid chromatographic (HPLC) system with UV and fluorescence detection was investigated for simultaneously determining four nadolol enantiomers in human plasma. The plasma samples were prepared using a convenient liquid-liquid extraction process and passed through HPLC. Nadolol was initially separated from the endogenous compounds or other impurities in human plasma on a Phenomenex silica column, and its enantiomers were resolved and determined on a Chirapak AD-H column. The developed HPLC method achieved an effective chiral separation and significantly eliminated endogenous compound interference. This optimal HPLC method was validated following FDA guidelines. The results showed good selectivity, linearity, accuracy (90.50 % - 105.27 %), and precision (RSDs < 9.52 %) for each enantiomer. This method was also successfully applied to determine nadolol enantiomers in the plasma samples of a healthy male volunteer (after orally administering 80 mg racemic nadolol), proving its suitability for nadolol stereoselective pharmacokinetic studies.

Separation and Purification of Protease from Bacillus subtlils CCKS-111 in Korean Traditional Soy Sauce (한국재래간장으로 부터 분리한 Bacillus subtilis CCKS-111이 생성하는 Protease의 분리 및 정제)

  • Kim, Sung;Lim, Seong-Il;Lee, Hee-Duck;Lee, Seon-Ho;Son, Jun-Ho;Choi, Hee-Jin;Kim, Yeung-Hweal;Choi, Cheong
    • Applied Biological Chemistry
    • /
    • v.40 no.3
    • /
    • pp.178-183
    • /
    • 1997
  • A protease was purified from Bacillus subtilis CCKS-111 by ammonium sulfate treatment, DEAE-cellulose ion-exchange chromatography, Sephadex G-100 gel filtration and high performance liquid chromatography (HPLC). The specific activity of the purified enzyme was 24.3 unit/mg protein and the purification fold of enzyme was 50.6. Molecular weight of the purified enzyme estimated about 28,000 by HPLC gel filtration. The amino acid residues of this enzyme were 251.3 except threonine, serine and glycine. This result was similar to Bacillus subtilis subtilisin DY. From the first N-terminal amino acid to the 32th amino acid, the amino acid sequence was estimated after RP-HPLC elution. N-terminal and the 32th amino acids were alanine and aspartic acid. Alanine, serine, glycine and arginine were four major acids in the enzyme.

  • PDF

Analysis of the Structure and Stability of Erythropoietin by pH and Temperature Changes using Various LC/MS

  • Chang, Seong-Hun;Kim, Hyun-Jung;Kim, Chan-Wha
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.9
    • /
    • pp.2663-2670
    • /
    • 2013
  • The purpose of stability testing is to provide evidence about how the quality of a drug varies with time under the influence of a variety of environmental factors. In this study, erythropoietin (EPO) was analyzed under different pH (pH 3 and pH 9) and temperature ($25^{\circ}C$ and $40^{\circ}C$) conditions according to current Good Manufacturing Practice (cGMP) and International Conference on Harmonisation (ICH) guidelines. The molecular weight difference between intact EPO and deglycosylated EPO was determined by SDS-PAGE, and aggregated forms of EPO under thermal stress and high-pH conditions were investigated by size exclusion chromatography. High pH and high temperature induced increases in dimer and high molecular weight aggregate forms of EPO. UPLC-ESI-TOF-MS was applied to analyze the changed modification sites on EPO. Further, normal-phase high-performance liquid chromatography was performed to identify proposed glycan structures and high pH anion exchange chromatography was carried out to investigate any change in carbohydrate composition. The results demonstrated that there were no changes in modification sites or the glycan structure under severe conditions; however, the number of dimers and aggregates increased at $40^{\circ}C$ and pH 9, respectively.

The Assessment of Carbendazim, Cyazofamid, Diethofencarb and Pyrimethanil Residue Levels in P. ginseng (C. A. Meyer) by HPLC

  • Choi, Jeong-Heui;El-Aty, A.M.Abd;Park, Young-Seok;Cho, Soon-Kil;Shim, Jae-Han
    • Bulletin of the Korean Chemical Society
    • /
    • v.28 no.3
    • /
    • pp.369-372
    • /
    • 2007
  • A fast and simple high-performance liquid chromatography (HPLC) method for the simultaneous determination of four pesticides having fungicide properties has been proposed for Panax ginseng, C. A. Meyer grown for 4, 5, or 6 years. Analytical separation was performed on C18 columns using ultraviolet detector under gradient conditions. Spiked blank samples were used as standards to counteract the matrix effect observed in the chromatographic determination. The HPLC response for all pesticides was linear, with determination coefficients > 0.9986. The average rate of recovery for pesticides spiked with 2 fortification levels was > 72% with relative standard deviations < 9%. The limits of quantification (LOQ) ranged from 0.03 to 0.16 ppm. These LOQs were lower than the respective maximum residue limits (MRL) established by the Korean Food and Drug Administration (KFDA), except for cyazofamid. The proposed method was used to determine pesticide residue levels in samples of ginseng obtained from Jeonnam Province (Republic of Korea). None of the pesticides were found in ginseng samples grown for 4, 5, or 6 years.

Determination of Thiamine in Pharmaceutical Preparations by Reverse Phase Liquid Chromatography Without Use of Organic Solvent

  • Suh, Joon Hyuk;Kim, Junghyun;Jung, Juhee;Kim, Kyunghyun;Lee, Seul Gi;Cho, Hyun-Deok;Jung, Yura;Han, Sang Beom
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.6
    • /
    • pp.1745-1750
    • /
    • 2013
  • A novel green aqueous mobile phase modified with room temperature ionic liquids (RTILs) was employed in the absence of volatile organic solvents or ion-pairing reagents to analyze thiamine, a very polar compound, by reverse phase high performance liquid chromatography (RP-HPLC). Due to its strongly hydrophilic nature, thiamine was eluted near the column dead time ($t_0$) using a mobile phase without adding RTILs or ion-pairing reagents, even if a 100% aqueous mobile phase, which has weak elution power under reverse phase conditions, was used. Thus, 1-ethyl-3-methyl-imidazolium hexafluorophosphate ([EMIM][$PF_6$]), which has the strongest chaotropic effect, was selected as a mobile phase additive to improve retention and avoid baseline disturbances at $t_0$. Various mobile phase parameters such as cation moiety, chaotropic anion moiety, pH and concentration of RTILs were optimized to determine thiamine at the proper retention time. Method validation was performed to assess linearity, intra- and inter-day accuracy and precision, recovery and repeatability; all results were found to be satisfactory. The developed method was also compared to the current official United States Pharmacopoeia (USP) and Korean Pharmacopoeia (KP) methods using an organic mobile phase containing an ionpairing reagent by means of evaluating various chromatographic parameters such as the capacity factor, theoretical plate number, peak asymmetry and tailing factor. The results indicated that the proposed method exhibited better efficiency of thiamine analysis than the official methods, and it was successfully applied to quantify thiamine in pharmaceutical preparations.