• Title/Summary/Keyword: HORIZONTAL BAR

Search Result 156, Processing Time 0.019 seconds

Characteristics of an electrochromic ECD (electro-chromic device) film in applications for smart windows with a 4-layer structure, a thickness of 0.5 mm (0.5 mm 이내의 두께를 갖는 4층 구조의 스마트 윈도우에 적용되는 전기변색 ECD(electro-chromic device) 필름 제조 및 특성)

  • Nam Il Kim;Geug Tae Kim
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.34 no.1
    • /
    • pp.16-21
    • /
    • 2024
  • Using electrochromic devices (ECD), smart window films that can change the colors from tinted state into transparent state by applying an external voltage were manufactured. Polyethylene terephthalate (PET) film was used as a substrate instead of conventional glass, and ECD modules having a total thickness of about 50 ㎛ were manufactured by sequentially introducing an ITO/Ag/ITO electrode layer, a WO3/TIC2 organic discoloration layer, and a Nafion fluorine electrolyte layer. Through a series of sputtering, bar coating, and thermal compression processes, a large scale smart window with a horizontal and vertical length of more than 80 mm was manufactured. When DC 3.5 V was applied, the transmittance decreased from 54 % to 24 % and moreover the color change could be confirmed even with the naked eye. Reversible color change capability at low external voltage implies that external sunlight can be selectively blocked which is effective in terms of energy saving.

Hysteretic Behavior of R/C Shear Wall with Various Lateral Reinforcements in Boundary Columns for Cyclic Lateral Load (경계부재내 횡보강근 배근방법에 따른 R/C전단벽의 반복하중에 대한 이력거동)

  • Seo, Soo-Yeon;Oh, Tae-Gun;Kim, Kyeong-Tae;Yoon, Seong-Joe
    • Journal of the Korea Concrete Institute
    • /
    • v.22 no.3
    • /
    • pp.357-366
    • /
    • 2010
  • This paper presents experimental results about shear wall with various lateral reinforcement details in boundary elements. The research objective is to study the structural behavior of shear wall with boundary column confined by rectangular spiral hoops and headed cross ties developed to improve workability in the fabrication of boundary columns. These two details can be fabricated in a factory and put together on-site after being delivered so that the construction work may be reduced. Main parameters in the experimental study were the types of hoop and cross tie: rectangular spiral hoop and headed cross tie vs. standard hoop and cross tie with hook. Four half scaled shear wall specimens with babel shape were made and tested by applying horizontal cyclic load under constant axial force, 10% of nominal compressive strength of concrete. Based on the test result, it was shown that the shear wall with rectangular spiral hoop and headed cross tie in boundary columns has structural capacity compatible with conventional shear wall. The specimen SW-Hh which has bigger hoop bar and higher volumetric ratio of transverse reinforcements than other showed improved energy dissipating characteristic but it presented a rapid reduction of strength after peak point. The results indicates that, it is necessary to consider volumetric ratio of transverse reinforcements as well as hoop space in designing of shear wall with boundary columns for improved strength and ductility.

Field Application of a Precast Concrete-panel Retaining Wall Adhered to In-situ Ground (원지반 부착식 판넬옹벽의 현장 적용성 평가)

  • Min, Kyoung-Nam;Lee, Jae-Won;Lee, Jung-Gwan;Kang, In-Kyu;Ahn, Tae-Bong
    • The Journal of Engineering Geology
    • /
    • v.26 no.1
    • /
    • pp.51-61
    • /
    • 2016
  • New building methods are needed to aid increased inner-city redevelopment and industrial construction. A particular area of improvement is the efficient use of cut slopes, with the minimization of associated problems. A retaining wall of precast panels can resist the horizontal earth pressure by increasing the shear strength of the ground and reinforcing it through contact with the panels. Precast panels allow quick construction and avoid the problem of concrete deterioration. Other problems to be solved include the digging of borrow pits, the disposal of material cut from the slope, and degradation of the landscape caused by the exposed concrete retaining wall.This study suggest the methods of improvement of an existing precast panel wall system by changing the appearance of the panels to that of natural rock and improving the process of adhering the panel to a vertical slope. The panels were tested in the laboratory and in the field. The laboratory test verified their specific strength and behavior, and the field test assessed the panels' ground adherence at a vertical cutting. Reinforcement of the cutting slope was also measured and compared with the results of 3D numerical analysis. The results of laboratory test, identified that the shear bar increase the punching resistance of panel. And as a results of test construction, identified the construct ability and field applicability of the panel wall system adhered to in-situ ground. In addition to that, extended measurement and numerical analysis, identified the long-term stability of panel wall system adhered to in-situ ground.

Improvement of Fall Prevention Method in Construction Site through Comparison with Advanced Countries' Cases (해외 사례 비교를 통한 건설현장 추락재해 예방기법 개선방안)

  • Kim, Dae Young;Yun, Sungmin;Kim, Ji-Myong;Lee, Sunyong;Son, Kiyoung
    • Journal of the Korea Institute of Building Construction
    • /
    • v.20 no.5
    • /
    • pp.471-480
    • /
    • 2020
  • Although the domestic industrial accidents have been decreased gradually, deaths in the construction sites have been occupied 49.9 percent of the total industry and deaths from fall accident have been accounted for 59.7 percent of the construction industry. In order to prevent fall accident, various safety activities and policy have been carried out. However, the impact on the domestic construction industry was inadequate. On the other hand, in advanced countries, such as the United States, Japan, EU, and Singapore Industrial accidents have been lower than domestic industry due to safety activities, the regulations and policies appropriate for each country's situation. In this study, we compare the major points of the Industrial Safety and Health Act in developed countries with those in South Korea to reduce the number of falls, and propose a revision. As a result of conducting research, three revisions have been proposed as 1) Enhance standards for fall height, 2) Improvement of upper safety rail height on guardrail, 3) Revision and research on Horizontal Sarety bar attachment system. This study will be utilized as a basic study for the analysis of cases in advanced countries.

Application of Linear Schedule Chart for Schedule Management of Linear Construction Project (선형시설물 공정관리 활용을 위한 선형공정표 활용 시스템 구축 방안)

  • Lee, Jaehee;Kang, Hyojeong;Kang, Leenseok
    • Korean Journal of Construction Engineering and Management
    • /
    • v.24 no.2
    • /
    • pp.13-23
    • /
    • 2023
  • Unlike building construction projects, where the activity is repeatedly carried out in a limited area, civil engineering projects such as roads and railroads are carried out in a linear type in a horizontal working space over several tens of kilometers. Each activity is managed with a station number that has a unit of distance from the starting point to the end point. For this reason, since the work location information of the activity is a major management factor, the Gantt chart system that expresses only schedule information may have limitations. In this study, authors propose a method for constructing a linear schedule chart that can simultaneously express schedule information indicating the start and finish dates and location information indicating the start and end positions of each activity, and develop a system for generating a linear schedule chart. In the study, the coordinate axes of the linear schedule chart consisted of distance and date values on the X and Y axes, respectively, and each activity was expressed as a symbol that can infer the type of work to increase the visibility of the linear schedule chart compared to the simple bar chart method. The linear schedule chart generation system was reviewed for practical applicability by utilizing the actual schedule data of bridge structures in a railroad project.

Investigating meso-scale low-temperature fracture mechanisms of recycled asphalt concrete (RAC) via peridynamics

  • Yuanjie Xiao;Ke Hou;Wenjun Hua;Zehan Shen;Yuliang Chen;Fanwei Meng;Zuen Zheng
    • Computers and Concrete
    • /
    • v.33 no.5
    • /
    • pp.605-619
    • /
    • 2024
  • The increase of reclaimed asphalt pavement (RAP) content in recycled asphalt concrete (RAC) is accompanied by the degradation of low-temperature cracking resistance, which has become an obstacle to the development of RAC. This paper aims to reveal the meso-scale mechanisms of the low-temperature fracture behavior of RAC and provide a theoretical basis for the economical recycling of RAP. For this purpose, micromechanical heterogeneous peridynamic model of RAC was established and validated by comparing three-point bending (TPB) test results against corresponding numerical simulation results of RAC with 50% RAP content. Furthermore, the models with different aggregate shapes (i.e., average aggregates circularity (${\bar{C_r}}=1.00$, 0.75, and 0.50) and RAP content (i.e., 0%, 15%, 30%, 50%, 75%, and 100%) were constructed to investigate the effect of aggregate shape and RAP content on the low-temperature cracking resistance. The results show that peridynamic models can accurately simulate the low-temperature fracture behavior of RAC, with only 2.9% and 13.9% differences from the TPB test in flexural strength and failure strain, respectively. On the meso-scale, the damage in the RAC is mainly controlled by horizontal tensile stress and the stress concentration appears in the interface transition zone (ITZ). Aggregate shape has a significant effect on the low-temperature fracture resistance, i.e., higher aggregate circularity leads to better low-temperature performance. The large number of microcracks generated during the damage evolution process for the peridynamic model with circular aggregates contributes to slowing down the fracture, whereas the severe stress concentration at the corners leads to the fracture of the aggregates with low circularity under lower stress levels. The effect of RAP content below 30% or above 50% is not significant, but a substantial reduction (16.9% in flexural strength and 16.4% in failure strain) is observed between the RAP content of 30% and 50%. This reduction is mainly attributed to the fact that the damage in the ITZ region transfers significantly to the aggregates, especially the RAP aggregates, when the RAP content ranges from 30% to 50%.