• Title/Summary/Keyword: HOMO (highest occupied molecular orbital)

Search Result 41, Processing Time 0.029 seconds

다층 구조의 4,7-diphenyl-1, 10-phenanthroline과 tris(8-hydroxyquinoloine) Aluminum 전자수송층을 이용한 유기발광소자의 효율 증진 메카니즘

  • Jang, Jae-Seung;Kim, Dae-Hun;Lee, Gwang-Seop;Kim, Tae-Hwan
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.472-472
    • /
    • 2012
  • 유기발광소자는 빠른 응답속도, 높은 색재현성, 높은 명암비의 장점을 가지고 있어 차세대 디스플레이로 각광 받고 있으며, 이미 소형 디스플레이로 상용화되고 있다. 유기발광소자에서는 발광효율을 높이기 위해서 전하들의 균형이 매우 중요하다. 유기발광소자 내 정공의 이동도는 전자의 이동도보다 빠르기 때문에 정공의 이동도를 감소하거나, 전자의 이동도를 증가하여 전하들의 균형을 형성함으로 유기발광소자의 효율을 증진시키는 연구가 진행되고 있다. 본 연구는 유기발광소자의 전자 수송층을 다층구조로 적층하여 전자의 이동도를 증가하여 효율이 증진하는 메커니즘을 기본으로 하였다. 전자 수송층을 tris(8-hydroxyquinoloine)aluminum ($Alq_3$) 단일층, 4,7-diphenyl-1, 10-phenanthroline (BPhen)과 $Alq_3$의 혼합층및 BPhen과 $Alq_3$ 다층 구조로 제작한 유기발광소자의 전기적, 발광 특성을 비교 분석하였다. BPhen은 lowest unoccupied molecular orbital (LUMO) 준위가 $Alq_3$의 LUMO 준위와 유사하여 전자 주입이 효율적으로 일어나며, 또한 낮은 highest occupied molecular orbital (HOMO) 준위는 정공 저지층의 역할을 하여 발광층 내에서 전하의 균형을 효율적으로 맞춰준다. 유기발광소자는 N,N,'-bis-(1-naphthyl)-N,N'-diphenyl1-1'-biphenyl-4,4'-diamine (NPB)/ $Alq_3$/ 다양한 전자수송층 / lithium quinolate (Liq)/ aluminium (Al) 음극 전극으로 각각 증착하여 제작하였다. 전자수송층을 다층 구조로 사용한 유기발광소자는 발광효율이 혼합층과 단일층에 비해 높았으며, 최대 발광효율은 전류밀도가 273 mA/cm2일때 4.5 cd/A였다. 다층구조의 전자수송층에서 다층으로 증착된 BPhen이 효율적인 전자 주입 및 전공 저지하는 역할을 최적화 하여 발광층에 더 많은 엑시톤이 형성하여, 유기발광소자의 효율을 증진시켜 준다는 사실을 알 수 있었다.

  • PDF

Electroanalytical Measurement of TEDA (Triethylenediamine) in the Masks of War

  • Ariani, Zahra;Honarmand, Ebrahim;Mostaanzadeh, Hossein;Motaghedifard, Mohammadhassan;Behpour, Mohsen
    • Journal of Electrochemical Science and Technology
    • /
    • v.8 no.1
    • /
    • pp.43-52
    • /
    • 2017
  • In this paper, for the first time, the electroanalytical study of Triethylenediamine, TEDA was done on a typically graphene modified carbon paste electrode (Gr/CPE) in pH=10.5 of phosphate buffer solutions (PBS). The surface morphology of the bare and modified electrodes was characterized by scanning electron microscopy (SEM), electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV). The electro-oxidation of TEDA was investigated at the surface of modified electrode. The results revealed that the oxidation peak current of TEDA at the surface of Gr/CPE is 2.70 times than that shown at bare-CPE. A linear calibration plot was observed in the range of 1.0 to 202.0 ppm. In this way, the detection limit was found to be 0.18 ppm. The method was then successfully applied to determination of TEDA in aqueous samples obtained from two kinds of activated carbon from the masks of war. On the other hand, density functional theory (DFT) method at B3LYP/6-311++G** level of theory and a conductor-like Polarizable Continuum Model (CPCM) was used to calculate the $pK_a$ values of TEDA. The energies of lowest unoccupied molecular orbital ($E_{LUMO}$) and highest occupied molecular orbital ($E_{HOMO}$), gap energy (${\Delta}E$) and some thermodynamic parameters such as Gibbs free energy of TEDA and its conjugate acid ($HT^+$) were calculated. The results of calculated $pK_a$ were found to be in good agreement with the experimental values.

New Low-Band Gap 2D-Conjugated Polymer with Alkylthiobithiophene-Substituted Benzodithiophene for Organic Photovoltaic Cells

  • Park, Eun Hye;Ahn, Jong Jun;Kim, Hee Su;Kim, Ji-Hoon;Hwang, Do-Hoon
    • Journal of the Korean Chemical Society
    • /
    • v.60 no.3
    • /
    • pp.194-202
    • /
    • 2016
  • Two conjugated semiconducting copolymers consisting of 4,7-bis(4-(2-ethylhexyl)-2-thiophene)-2,1,3-benzothiadiazole (DTBT) and benzo[1,2-b:4,5-b']dithiophene with 5-(2-ethylhexyl)-2,2'-bithiophene (BDTBT) or 5-(2-ethylhexylthio)- 2,2'-bithiophene (BDTBT-S) were designed and synthesized as donor materials for organic photovoltaic cells (OPVs). Alkylthio-substituted PBDTBT-S-DTBT showed a higher hole mobility and lower highest occupied molecular orbital (HOMO) energy level (by 0.08 eV) than the corresponding alkyl-substituted PBDTBT-DTBT. An OPV fabricated using PBDTBT-S-DTBT showed higher VOC and JSC values of 0.83 V and 7.56 mA/cm2, respectively, than those of a device fabricated using PBDTBT-DTBT (0.74 V) leading to a power conversion efficiency of 2.05% under AM 1.5G 100 mW/cm2 illumination.

DFT/B3LYP Study of the Substituent Effects on the Reaction Enthalpies of the Antioxidant Mechanisms of Magnolol Derivatives in the Gas-Phase and Water

  • Najafi, Meysam;Najafi, Mohammad;Najafi, Houshang
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.11
    • /
    • pp.3607-3617
    • /
    • 2012
  • In this paper, the study of various ortho- and meta-substituted Magnolol derivatives is presented. The reaction enthalpies related to three antioxidant action mechanisms HAT, SET-PT and SPLET for substituted Magnolols have been calculated using DFT/B3LYP method in gas-phase and water. Calculated results show that electron-withdrawing substituents increase the bond dissociation enthalpy (BDE), ionization potential (IP) and oxidation/reduction enthalpy (O/RE), while electron-donating ones cause a rise in the proton dissociation enthalpy (PDE) and proton affinity (PA). In ortho- position, substituents show larger effect on reaction enthalpies than in meta-position. In comparison to gas-phase, water attenuates the substituent effect on all reaction enthalpies. In gas-phase, BDEs are lower than PAs and IPs, i.e. HAT represents the thermodynamically preferred pathway. On the other hand, SPLET mechanism represents the thermodynamically favored process in water. Results show that calculated enthalpies can be successfully correlated with Hammett constants (${\sigma}_m$) of the substituted Magnolols. Furthermore, calculated IP and PA values for substituted Magnolols show linear dependence on the energy of the highest occupied molecular orbital ($E_{HOMO}$).

Fluorene-Based Conjugated Copolymers Containing Hexyl-Thiophene Derivatives for Organic Thin Film Transistors

  • Kong, Ho-Youl;Chung, Dae-Sung;Kang, In-Nam;Lim, Eun-Hee;Jung, Young-Kwan;Park, Jong-Hwa;Park, Chan-Eon;Shim, Hong-Ku
    • Bulletin of the Korean Chemical Society
    • /
    • v.28 no.11
    • /
    • pp.1945-1950
    • /
    • 2007
  • Two fluorene-based conjugated copolymers containing hexyl-thiophene derivatives, PF-1T and PF-4T, were synthesized via the palladium-catalyzed Suzuki coupling reaction. The number-average molecular weights (Mn) of PF-1T and PF-4T were found to be 19,100 and 13,200, respectively. These polymers were soluble in common organic solvents such as chloroform, chlorobenzene, toluene, etc. The UV-vis absorption maximum peaks of PF-1T and PF-4T in the film state were found to be 410 nm and 431 nm, respectively. Electrochemical characterization revealed that these polymers have low highest occupied molecular orbital (HOMO) levels, indicating good resistance against oxidative doping. Thin film transistor devices were fabricated using the top contact geometry. PF-1T showed much better thin-film transistor performance than PF-4T. A thin film of PF- 1T gave a saturation mobility of 0.001-0.003 cm2 V?1 s?1, an on/off ratio of 1.0 × 105, and a small threshold voltage of ?8.3 V. To support TFT performance, we carried out DSC, AFM, and XRD measurements.

Synthesis, Photovoltaic Properties and Side-chain Effect of Copolymer Containing Phenothiazine and 2,1,3-Benzothiadiazole (Phenothiazine과 2,1,3-Benzothiadiazole을 포함한 Copolymer의 합성 및 Side-chain 치환에 따른 Photovoltaic 특성 연구)

  • Yun, Dae-Hee;Yoo, Han-Sol;Seong, Ki-Ho;Lim, Jeong-Ho;Park, Yong-Sung;Wo, Je-Wan
    • Applied Chemistry for Engineering
    • /
    • v.25 no.5
    • /
    • pp.487-496
    • /
    • 2014
  • In this study, three kinds of polymers based on phenothiazine-benzothiadiazole were synthesized by a Suzuki coupling reaction, and the various side-chains were substituted at the nitrogen of phenothiazine. The optical and electrochemical properties of synthesized polymers were analyzed. The results indicate that their absorption ranged from 300 to 700 nm, and also confirmed the ideal highest occupied molecular orbital (HOMO) energy level was about -5.4 eV with low band-gap energy. Photovoltaic devices were fabricated using a photoactive layer composed of a blended solution of the polymer and $PC_{71}BM$ in ortho-dichlorobenzene The device with P2HDPZ-bTP-OBT containing the branched side-chain and long chain showed the best performance; the maximum power conversion efficiency of this device was 2.4% (with $V_{OC}$ : 0.74 V, $J_{SC}$ : $6.9mA/cm^2$, FF : 48.0%).

Carrier Transport of Quantum Dot LED with Low-Work Function PEIE Polymer

  • Lee, Kyu Seung;Son, Dong Ick;Son, Suyeon;Shin, Dong Heon;Bae, Sukang;Choi, Won Kook
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.432.2-432.2
    • /
    • 2014
  • Recently, colloidal core/shell type quantum dots lighting-emitting diodes (QDLEDs) have been extensively studied and developed for the future of optoelectronic applications. In the work, we fabricate an inverted CdSe/ZnS quantum dot (QD) based light-emitting diodes (QDLED)[1]. In order to reduce work function of indium tin oxide (ITO) electrode for inverted structure, a very thin (<10 nm) polyethylenimine ethoxylated (PEIE) is used as surface modifier[2] instead of conventional metal oxide electron injection layer. The PEIE layer substantially reduces the work function of ITO electrodes which is estimated to be 3.08 eV by ultraviolet photoemission spectroscopy (UPS). From transmission electron microscopy (TEM) study, CdSe/ZnS QDs are uniformly distributed and formed by a monolayer on PEIE layer. In this inverted QD LED, two kinds of hybrid organic materials, [poly (9,9-di-n-octyl-fluorene-alt-benzothiadiazolo)(F8BT) + poly(N,N'-bis (4-butylphenyl)-N,N'-bis(phenyl)benzidine (poly-TPD)] and [4,4'-N,N'-dicarbazole-biphenyl (CBP) + poly-TPD], were adopted as hole transport layer having high highest occupied molecular orbital (HOMO) level for improving hole transport ability. At a low-operating voltage of 8 V, the device emits orange and red spectral radiation with high brightness up to 2450 and 1420 cd/m2, and luminance efficacy of 1.4 cd/A and 0.89 cd/A, respectively, at 7 V applied bias. Also, the carrier transport mechanisms for the QD LEDs are described by using several models to fit the experimental I-V data.

  • PDF

Development of Blue Organic Light-emitting Diodes(OLEDs) Due to Change in Mixed Ratio of HTL:EML(DPVBi:NPB) Layers (HTL:EML(DPVBi:NPB)층의 조성비 변화에 따른 청색 유기 발광 소자 개발)

  • Lee, Tae-Sung;Lee, Byoung-Wook;Hong, Chin-Soo;Kim, Chang-Kyo
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.21 no.9
    • /
    • pp.853-858
    • /
    • 2008
  • The structure of organic light-emitting diodes(OLEDs) with typical heterostructure consists of anode, hole injection layer, hole transport layer, light-emitting layer, electron transport layer, electron injection layer, and cathode. 4,4bis[N-(1-napthyl)-N-phenyl-amino]-biphenyl(NPB) used as a hole transport layer and 4'4-bis(2,2'-diphenyl vinyl)-1,1'-biphenyl(DPVBi) used as a blue light emitting layer were graded-mixed at selected ratio. Interface at heterojunction between the hole transport layer and the elecrtron transport layer restricts carrier's transfer. Mixing of the hole transport layer and the emitting layer reduces abrupt interface between the hole transport layer and the electron transport layer. The operating voltage of OLED devices with graded mixed-layer structure is 2.8 V at 1 $cd/m^2$ which is significantly lower than that of OLED device with typical heterostructure. The luminance of OLED devices with graded mixed-layer structure is 21,000 $cd/m^2$ , which is much higher than that of OLED device with typical heterostructure. This indicates that the graded mixed-layer enhances the movement of carriers by reducing the discontinuity of highest occupied molecular orbital(HOMO) of the interface between hole transport layer and emitting layer.

Synthesis and Photovoltaic Properties of Alternating Conjugated Polymers Derived from Thiophene-Benzothiadiazole Block and Fluorene/Indenofluorene Units

  • Li, Jianfeng;Tong, Junfeng;Zhang, Peng;Yang, Chunyan;Chen, Dejia;Zhu, Yuancheng;Xia, Yangjun;Fan, Duowang
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.2
    • /
    • pp.505-512
    • /
    • 2014
  • A new donor-accepter-donor-accepter-donor (D-A-D-A-D) type 2,1,3-benzothiadiazole-thiophene-based acceptor unit 2,5-di(4-(5-bromo-4-octylthiophen-2-yl)-2,1,3-benzothiadiazol-7-yl)thiophene ($DTBTTBr_2$) was synthesized. Copolymerized with fluorene and indeno[1,2-b]fluorene electron-rich moieties, two alternating narrow band gap (NBG) copolymers PF-DTBTT and PIF-DTBTT were prepared. And two copolymers exhibit broad and strong absorption in the range of 300-700 nm with optical band gap of about 1.75 eV. The highest occupied molecular orbital (HOMO) energy levels vary between -5.43 and -5.52 eV and the lowest unoccupied molecular orbital (LUMO) energy levels range from -3.64 to -3.77 eV. Potential applications of the copolymers as electron donor material and $PC_{71}BM$ ([6,6]-phenyl-$C_{71}$ butyric acid methyl ester) as electron acceptors were investigated for photovoltaic solar cells (PSCs). Photovoltaic performances based on the blend of PF-DTBTT/$PC_{71}BM$ (w:w; 1:2) and PIF-DTBTT/$PC_{71}BM$ (w:w; 1:2) with devices configuration as ITO/PEDOT: PSS/blend/Ca/Al, show an incident photon-to-current conversion efficiency (IPCE) of 2.34% and 2.56% with the open circuit voltage ($V_{oc}$) of 0.87 V and 0.90 V, short circuit current density ($J_{sc}$) of $6.02mA/cm^2$ and $6.12mA/cm^2$ under an AM1.5 simulator ($100mA/cm^2$). The photocurrent responses exhibit the onset wavelength extending up to 720 nm. These results indicate that the resulted narrow band gap copolymers are viable electron donor materials for polymer solar cells.

Determination of Reactivities by Molecular Orbital Theory (V). Sigma Molecular Orbital Treatment of $S_N$ Reactivities of Alkylchlorides. (화학반응성의 분자궤도론적 연구 (제5보). 염화알킬의 친핵성치환 반응성에 대한 시그마 분자궤도론적 연구)

  • Ikchoon Lee;Bon-Su Lee;Kwang-Su Kim
    • Journal of the Korean Chemical Society
    • /
    • v.17 no.2
    • /
    • pp.95-104
    • /
    • 1973
  • Ground electronic structures and SNreactivities of a series of alkylchlorides (methyl,ethyl, iso-propyl, trans n-butyl, sec-butyl, tert-butylchloride) have been studied using approximate $({\sigma}-MO)$ method, such as EHT and CNDO/2. It was found that CNDO/2 gives better results for the systems such as alkylchlorides whose structural differences are not remarkable, in comparison with EHT method. According to CNDO/2 results, calculated dipole moments for alkylchlorides are slightly higher than observed values, showing the order of primary < secondary < tertiary alkylchlorides. It was also found that highest occupied(HO) MO's are completely or nearly degenerate, and show relatively weak $\pi$-antibonding nature between$\alpha$-carbon and Cl atoms. Furthermore, the electrons in this MO are largely confined to Cl atom, and hence these behaves as likely as p-lone pair electrons of Cl atom. On the contrary, lowest unoccupied (LU) MO's show strong $\sigma$-antibonding nature between $\alpha$-carbon and Cl atoms whose electron clouds are directed along the C-Cl axis. It has been discussed that the$S_N2$ reactivities of alkylchlorides may largely be controlled by ${\sigma}^{\ast}$ LUMO, and the antibonding strength between $\alpha$-carbon and Cl atoms in this MO may become the measure of $S_N2$reactivity. The relationship between $S_N2$reactivity and C-Cl bond polarizability has also been discussed. It has been suggested that the unique structure factors determining $S_N1$reactivities may be $\pi$-antibonding strength between $\alpha$-carbon and Cl atoms in HOMO and C-Cl bond strength in ground state.

  • PDF