• Title/Summary/Keyword: HO-1/Nrf-2

Search Result 213, Processing Time 0.022 seconds

Anti-oxidative and Anti-inflammatory Activities of Decaisnea insignis Ethanol Extract (Decaisnea insignis 에탄올 추출물의 항산화 및 항염증 활성)

  • Jin, Kyong-Suk;Lee, Ji Young;Kwon, Hyun Ju;Kim, Byung Woo
    • Journal of Life Science
    • /
    • v.24 no.9
    • /
    • pp.973-980
    • /
    • 2014
  • This study was conducted to explore new nutraceutical resources from the plant kingdom possessing biological activities. To fulfill this purpose, the anti-oxidative and anti-inflammatory activities of Decaisnea insignis ethanol extract (DIEE) were evaluated. First, DIEE possessed potent scavenging activity against 1,1-diphenyl-2-picryl hydrazyl (DPPH), similar to ascorbic acid used as a positive control. Moreover, DIEE inhibited lipopolysaccharide (LPS)- and hydrogen peroxide ($H_2O_2$)-induced reactive oxygen species (ROS) in RAW 264.7 cells. Furthermore, DIEE induced the expression of an anti-oxidative enzyme, heme oxygenase 1 (HO-1), and its upstream transcription factor, nuclear factor-E2-related factor 2 (Nrf2), in a dose-dependent manner. The modulation of the HO-1 and Nrf2 expressions might be regulated by mitogen-activated protein kinases (MAPKs) and their upstream signaling pathways. On the other hand, DIEE suppressed LPS-induced nitric oxide (NO) formation without cytotoxicity. The inhibition of the NO formation was the result of the downregulation of inducible NO synthase (iNOS) by DIEE. The suppression of NO and iNOS by DIEE might be modulated by their upstream transcription factors, nuclear factor ${\kappa}B$ ($NF-{\kappa}B$), and activator protein 1 (AP-1) pathways. Taken together, these results provide important new insights that D. insignis possesses anti-oxidative and anti-inflammatory activities. Therefore, it might be utilized as a promising material in the field of nutraceuticals.

Neuroprotective Effects of the Extract of Zingiberis Rhizoma (건강 추출물의 뇌세포 보호 작용)

  • Jeong, Gil-Saeng;Li, Bin;Lee, Dong-Sung;Choi, Hyun-Gyu;Kim, Youn-Chul
    • Korean Journal of Pharmacognosy
    • /
    • v.41 no.3
    • /
    • pp.190-195
    • /
    • 2010
  • Glutamate-induced oxidative injury contributes to neuronal degeneration in many central nervous system (CNS) diseases, such as Parkinson's disease, Alzheimer's disease, epilepsy and ischemia. Inducible heme oxygenase (HO)-1 acts against oxidants that are thought to play a role in the pathogenesis of these diseases. NNMBS098, a composition comprising the water insoluble of the 70% EtOH extract of Zingiberis Rhizoma, showed the potent neuroprotective effects on glutamateinduced neurotoxicity by induced the expression of heme oxygenase (HO)-1 and increased HO activity in the mouse hippocampal HT22 cells. Furthermore, NNMBS098 caused the nuclear accumulation of nuclear factor E2-related factor 2 (Nrf2) in mouse hippocampal HT22 cells. In addition, we found that treatment with c-Jun N-terminal kinase (JNK) inhibitor (SP600125) reduced NNMBS098-induced HO-1 expression and NNMBS098 also increased JNK phosphorylation. Therefore, these results suggest that NNMBS098 increases cellular resistance to glutamate-induced oxidative injury in mouse hippocampal HT22 cells, presumably through JNK pathway-Nrf2-dependent HO-1 expression.

Anti-inflammatory effect of beluga lentil extract in RAW 264.7 macrophages (RAW 264.7 대식세포에서 벨루가 렌틸 추출물의 항염증 효과)

  • Hyeon-Ji Song;Syng-Ook Lee
    • Food Science and Preservation
    • /
    • v.31 no.3
    • /
    • pp.462-473
    • /
    • 2024
  • The anti-inflammatory effect of beluga lentil extract (BLE) and its underlying mechanisms were investigated in lipopolysaccharide (LPS)-treated RAW 264.7 cells. Treatment with BLE significantly decreased nitric oxide (NO) production and protein and mRNA expressions of inducible NO synthase (iNOS) in LPS-treated RAW 264.7 cells. Down-regulation of this inflammatory gene expression was not associated with NF-κB/MAPK signaling pathways, and further mechanistic studies demonstrated that BLE decreased LPS-induced iNOS expression through upregulation of the nuclear factor erythroid 2-related factor 2 (Nrf2)-mediated heme oxygenase-1 (HO-1) expression. These results suggest that beluga lentil represent a potential source of natural anti-inflammatory agents, and further studies will be necessary to determine its anti-inflammatory effects in vivo.

Anti-inflammation and Anti-inflammasome Effects of Bambusae Caulis in Liquamen mediated by Nrf2 Activation in Kupffer cells (쿠퍼 세포에서 Nrf2 활성화 매개 죽력의 염증 및 인플라마좀 억제 효능)

  • Ji Hye Yang
    • Herbal Formula Science
    • /
    • v.31 no.4
    • /
    • pp.253-264
    • /
    • 2023
  • Objectives : Bambusae Caulis in Liquamen (BCL), a traditional herbal medicine, is a distilled product of condensation from the burning of fresh bamboo stems. We previously identified the anti-oxidant capacity of BCL in hepatocytes and suggested that BCL is a promising therapeutic candidate for treating oxidative stress-induced hepatocellular damage. Despite the importance of the role played by Kupffer cells in liver disease, the efficacy of BCL on Kupffer cells is unclear. Therefore, this study aimed to determine whether BCL could suppress LPS-induced inflammation and LPS+ATP-induced inflammasomes in Kupffer cells. Methods : We used ImKCs, a murine immortalized Kupffer cell line to examined whether BCL inhibited LPS-induced inflammation response and oxidave stress. And, we prepared a total of 18 L of BCL, purchased from Bamboo Forest Foods Co., Ltd. (648 Samdari, Damyang-eup, Damyang-gun, Jeollanam-do, Republic of Korea), was concentrated using a decompression concentrator. Result : The LPS-induced release of inflammatory cytokines was abolished by BCL treatment. Also, BCL treatment suppressed the LPS+ATP-induced expression of inflammasome proteins (NLRP3, IL-1, and IL-18), and inhib β ited the release of IL-1 . BCL decreased LPS-or LPS+ATP-induc β ed reactive oxygen species production. In addition, BCL increased nuclear translocation of Nrf2 and the expression of HO-1 in a time-dependent manner. Conclusion : These results suggest the efficacy of BCL with respect to its anti-inflammatory and anti-inflammasome effects mediated by Nrf2 in Kupffer cells.

Socheongja and Socheong 2 Extracts Suppress Lipopolysaccharide-induced Inflammation and Oxidative Stress in RAW 264.7 Macrophages through Activating Nrf2/HO-1 Signaling and Suppressing MAPKs Pathway (RAW 264.7 대식세포에서 Nrf2/HO-1 신호 전달계 활성화와 MAPKs 경로 억제를 통한 소청자와 소청2호의 LPS 매개 염증성 및 산화적 스트레스 반응의 억제)

  • Kwon, Da Hye;Choi, Eun Ok;Hwang, Hye-Jin;Kim, Kook Jin;Hong, Su Hyun;Lee, Dong Hee;Choi, Yung Hyun
    • Journal of Life Science
    • /
    • v.28 no.2
    • /
    • pp.207-215
    • /
    • 2018
  • Inflammatory response and oxidative stress play critical roles in the development and progression of many human diseases. Therefore, a great deal of attention has been focused on finding functional materials that can control inflammation and oxidative stress simultaneously. The purpose of this study was to investigate the effects of Socheongja and Socheong 2, Korean black seed coat soybean varieties, on the inflammatory and oxidative stress induced by lipopolysaccharide (LPS) in RAW 264.7 macrophages. Our data indicated that the extracts of Socheongja (SCJ) and Socheong 2 (SC2) significantly suppressed LPS-induced production of nitrite oxide (NO) and prostaglandin $E_2$, key pro-inflammatory mediators, by suppressing the expression of inducible NO synthase and cyclooxygenase-2. It was also found that SCJ and SC2 reduced the LPS-induced secretion of pro-inflammatory cytokines, such as tumor necrosis $factor-{\alpha}$ and $interleukin-1{\beta}$, which was concomitant with a decrease in the protein levels. In addition, SCJ and SC2 markedly diminished LPS-stimulated intracellular reactive oxygen species accumulation, and effectively enhanced nuclear factor erythroid 2-related factor 2 (Nrf2) and heme oxygenase (HO)-1 expression. Furthermore, LPS-induced activation of mitogen-activated protein kinases (MAPKs) was abrogated by SCJ and SC2. Taken together, these data suggest that SCJ and SC2 may offer protective roles against LPS-induced inflammatory and oxidative responses in RAW 264.7 macrophages through attenuating MAPKs pathway, and these effects are mediated, at least in part, through activating Nrf2/HO-1 pathway. Given these results, we propose that SCJ and SC2 have therapeutic potential in the treatment of inflammatory and oxidative disorders caused by over-activation of macrophages.

Activation of Heme Oxygenase-1 by Mangiferin in Human Retinal Pigment Epithelial Cells Contributes to Blocking Oxidative Damage

  • Cheol Park;Hee-Jae Cha;Hyun Hwangbo;EunJin Bang;Heui-Soo Kim;Seok Joong Yun;Sung-Kwon Moon;Wun-Jae Kim;Gi-Young Kim;Seung-On Lee;Jung-Hyun Shim;Yung Hyun Choi
    • Biomolecules & Therapeutics
    • /
    • v.32 no.3
    • /
    • pp.329-340
    • /
    • 2024
  • Mangiferin is a kind of natural xanthone glycosides and is known to have various pharmacological activities. However, since the beneficial efficacy of this compound has not been reported in retinal pigment epithelial (RPE) cells, this study aimed to evaluate whether mangiferin could protect human RPE ARPE-19 cells from oxidative injury mimicked by hydrogen peroxide (H2O2). The results showed that mangiferin attenuated H2O2-induced cell viability reduction and DNA damage, while inhibiting reactive oxygen species (ROS) production and preserving diminished glutathione (GSH). Mangiferin also antagonized H2O2-induced inhibition of the expression and activity of antioxidant enzymes such as manganese superoxide dismutase and GSH peroxidase, which was associated with inhibition of mitochondrial ROS production. In addition, mangiferin protected ARPE-19 cells from H2O2-induced apoptosis by increasing the Bcl-2/Bax ratio, decreasing caspase-3 activation, and blocking poly(ADP-ribose) polymerase cleavage. Moreover, mangiferin suppressed the release of cytochrome c into the cytosol, which was achieved by interfering with mitochondrial membrane disruption. Furthermore, mangiferin increased the expression and activity of heme oxygenase-1 (HO-1) and nuclear factor-erythroid-2 related factor 2 (Nrf2). However, the inhibition of ROS production, cytoprotective and anti-apoptotic effects of mangiferin were significantly attenuated by the HO-1 inhibitor, indicating that mangiferin promoted Nrf2-mediated HO-1 activity to prevent ARPE-19 cells from oxidative injury. The results of this study suggest that mangiferin, as an Nrf2 activator, has potent ROS scavenging activity and may have the potential to protect oxidative stress-mediated ocular diseases.

Tribulus terrestris Suppresses the Lipopolysaccharide-Induced Inflammatory Reaction in RAW264.7 Macrophages through Heme Oxygenase-1 Expressions

  • Kim, Jai Eun
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.28 no.1
    • /
    • pp.63-68
    • /
    • 2014
  • The fruit of Tribulus terrestris L. (Zygophyllaceae) is an important source of traditional Korean and Chinese medicines. In this study, NNMBS223, consisting of the ethanol extract of T. terrestris, showed potent anti-inflammatory activities in RAW264.7 macrophages. We investigated the effect of NNMBS223 in suppressing the protein expression of inducible nitric oxide synthase (iNOS), cyclooxygenase (COX)-2 and production of iNOS-derived nitric oxide (NO), COX-2-derived prostaglandin E2 (PGE2) in lipopolysaccharide (LPS)-stimulated macrophages. In addition, NNMBS223 induced expression of heme oxygenase (HO)-1 through nuclear translocation of nuclear factor E2-related factor 2 (Nrf2) in macrophages. The effects of NNMBS223 on LPS-induced production of NO and PGE2 were partially reversed by the HO activity inhibitor tin protoporphyrin (SnPP). These findings suggest that Nrf2-dependent increases in expression of HO-1 induced by NNMBS223 conferred anti-inflammatory activities in LPS stimulated RAW264.7 macrophages.

Antioxidant effects of fucoxanthin rich powder in rats fed with high fat diet

  • Ha, Ae Wha;Na, Se Jung;Kim, Woo Kyoung
    • Nutrition Research and Practice
    • /
    • v.7 no.6
    • /
    • pp.475-480
    • /
    • 2013
  • The purpose of this study was to determine the antioxidant effect of fucoxanthin. After rats were fed a normal fat diet (NF), high fat diet (HF), and high fat with 0.2% fucoxanthin diet (HF + Fxn) for 4 weeks, the markers of oxidative stress and antioxidant capacity like lipid peroxidation, plasma total antioxidant capacity (TAC), and activities of antioxidant enzymes (catalase, superoxide dismutase (SOD), and gluthathione peroxidase (GSH-Px)) were determined. mRNA expression of transcription factor, nuclear erythroid factor like 2 (Nrf2), and its target genes such as NAD(P)H quinone oxidoreductase1 (NQO1) and heme oxygenase-1 (HO-1) were also determined. Mean weight gain in the HF + Fxn group was lower, without statistical significance, and the total food intake in the HF + Fxn group was lower than that in the HF group (P < 0.05). The activity of GSH-Px (P < 0.05) in plasma was significantly higher in the HF + Fxn group than those in the HF group (P < 0.05). In the liver, the activities of catalase (P < 0.05) and GSH-Px (P < 0.05) in the HF + Fxn group were significantly higher than those in the HF group. Plasma TAC level was significantly higher in the HF + Fxn group than that in the HF group (P < 0.05). Lipid peroxidation in plasma tended to be lower without statistical significance. Fucoxanthin supplements were shown to have higher mRNA expression of Nrf2 and NQO1 than those in the high fat diet only group (P < 0.05). In conclusion, supplementation of fucoxanthin improved the antioxidant capacity, depleted by high fat diet, by activating the Nrf2 pathway and its downstream target gene NQO1. Therefore, supplementation of fucoxanthin, especially for those who consume high fat in their diet, may benefit from reduced risk of oxidative stress.

Carbon Monoxide Ameliorates 6-Hydroxydopamine-Induced Cell Death in C6 Glioma Cells

  • Moon, Hyewon;Jang, Jung-Hee;Jang, Tae Chang;Park, Gyu Hwan
    • Biomolecules & Therapeutics
    • /
    • v.26 no.2
    • /
    • pp.175-181
    • /
    • 2018
  • Carbon monoxide (CO) is well-known as toxic gas and intrinsic signaling molecule such as neurotransmitter and blood vessel relaxant. Recently, it has been reported that low concentration of CO exerts therapeutic actions under various pathological conditions including liver failure, heart failure, gastric cancer, and cardiac arrest. However, little has been known about the effect of CO in neurodegenerative diseases like Parkinson's disease (PD). To test whether CO could exert a beneficial action during oxidative cell death in PD, we examined the effects of CO on 6-hydroxydopamine (6-OHDA)-induced cell death in C6 glioma cells. Treatment of CO-releasing molecule-2 (CORM-2) significantly attenuated 6-OHDA-induced apoptotic cell death in a dose-dependent manner. CORM-2 treatment decreased Bax/Bcl2 ratio and caspase-3 activity, which had been increased by 6-OHDA. CORM-2 increased phosphorylation of NF-E2-related factor 2 (Nrf2) which is a transcription factor regulating antioxidant proteins. Subsequently, CORM-2 also increased the expression of heme oxygenase-1 and superoxide dismutases (CuZnSOD and MnSOD), which were antioxidant enzymes regulated by Nrf2. These results suggest that CO released by CORM-2 treatment may have protective effects against oxidative cell death in PD through the potentiation of cellular adaptive survival responses via activation of Nrf2 and upregulation of heme oxygenase-1, leading to increasing antioxidant defense capacity.

Anti-Oxidative Effects of Cymbopoton Citratus Ethanol Extract through the Induction of HO-1 Expression in RAW 264.7 Cells (RAW264.7 세포에서 Cymbopogon Citratus 에탄올 추출물의 HO-1 유도를 통한 항산화 효과)

  • Chung-Mu Park;Hyun-Seo Yoon
    • Journal of The Korean Society of Integrative Medicine
    • /
    • v.11 no.4
    • /
    • pp.73-82
    • /
    • 2023
  • Purpose : Cymbopogon citratus, also known as lemongrass, has widely spread around the world and its essential oil is usually applied in food, perfume, and other industrial purposes. In addition, C. citratus has also been used for the treatment of inflammation, digestive disorders, and diabetes in traditional medicine. In this study, the antioxidative activity of C. citratus ethanol extract (CCEE) was analyzed in RAW 264.7 cells through the induction of one of phase II enzymes, heme oxygenase (HO)-1 by nuclear factor-erythroid 2 p45-related factor (Nrf)2, mitogen-activated protein kinase (MAPK), and phosphoinositide 3-kinase (PI3K)/Akt. Methods : The antioxidative activity of CCEE against oxidative stress and its underlying molecular mechanisms were analyzed by the cell viability assay, intracellular reactive oxygen species (ROS) formation assay, and Western blot analysis in RAW 264.7 cells. Results : The results exhibited that CCEE potently attenuated tert-butyl hydroperoxide (t-BHP) induced intracellular ROS levels in a dose-dependent manner without any cytotoxicity. CCEE treatment significantly induced the expression of HO-1 which is known for its antioxidative capacity. In addition, CCEE treatment significantly upregulated the expression of Nrf2, a corresponding transcription factor for the regulation of antioxidative enzymes, which was in accordance with the HO-1 overexpression. MAPK and PI3K/Akt were also evaluated for their important roles in the regulation of cellular redox homeostasis against oxidative damage. As a result, the potent HO-1 expression was mediated by not extracellular regulated kinase (ERK), c-Jun NH2 terminal kinase (JNK), p38, but phosphoinositide 3-kinase (PI3K) phosphorylation. To confirm the antioxidative activity of CCEE-induced HO-1 expression, oxidative damage was initiated by t-BHP and attenuated by CCEE treatment, which was identified by HO-1 selective inhibitor and inducer. Conclusion : Consequently, CCEE potently induced the HO-1-mediated antioxidative potential through the modulation of Nrf2 and PI3K/Akt signaling pathways in RAW 264.7 cells. These results suggest that CCEE could be a promising strategy for the mitigation against cellular oxidative damage.