• Title/Summary/Keyword: HMM(HMM)

Search Result 964, Processing Time 0.025 seconds

Sound Model Generation using Most Frequent Model Search for Recognizing Animal Vocalization (최대 빈도모델 탐색을 이용한 동물소리 인식용 소리모델생성)

  • Ko, Youjung;Kim, Yoonjoong
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.10 no.1
    • /
    • pp.85-94
    • /
    • 2017
  • In this paper, I proposed a sound model generation and a most frequent model search algorithm for recognizing animal vocalization. The sound model generation algorithm generates a optimal set of models through repeating processes such as the training process, the Viterbi Search process, and the most frequent model search process while adjusting HMM(Hidden Markov Model) structure to improve global recognition rate. The most frequent model search algorithm searches the list of models produced by Viterbi Search Algorithm for the most frequent model and makes it be the final decision of recognition process. It is implemented using MFCC(Mel Frequency Cepstral Coefficient) for the sound feature, HMM for the model, and C# programming language. To evaluate the algorithm, a set of animal sounds for 27 species were prepared and the experiment showed that the sound model generation algorithm generates 27 HMM models with 97.29 percent of recognition rate.

A HMM-based Method of Reducing the Time for Processing Sound Commands in Computer Games (컴퓨터 게임에서 HMM 기반의 명령어 신호 처리 시간 단축을 위한 방법)

  • Park, Dosaeng;Kim, Sangchul
    • Journal of Korea Game Society
    • /
    • v.16 no.2
    • /
    • pp.119-128
    • /
    • 2016
  • In computer games, most of GUI methods are keyboards, mouses and touch screens. The total time of processing the sound commands for games is the sum of input time and recognition time. In this paper, we propose a method for taking only the prefixes of the input signals for sound commands, resulting in the reduced the total processing time, instead of taking the whole input signals. In our method, command sounds are recognized using HMM(Hidden Markov Model), where separate HMM's are built for the whole input signals and their prefix signals. We experiment our proposed method with representative commands of platform games. The experiment shows that the total processing time of input command signals reduces without decreasing recognition rate significantly. The study will contribute to enhance the versatility of GUI for computer games.

Recognition for Noisy Speech by a Nonstationary AR HMM with Gain Adaptation Under Unknown Noise (잡음하에서 이득 적응을 가지는 비정상상태 자기회귀 은닉 마코프 모델에 의한 오염된 음성을 위한 인식)

  • 이기용;서창우;이주헌
    • The Journal of the Acoustical Society of Korea
    • /
    • v.21 no.1
    • /
    • pp.11-18
    • /
    • 2002
  • In this paper, a gain-adapted speech recognition method in noise is developed in the time domain. Noise is assumed to be colored. To cope with the notable nonstationary nature of speech signals such as fricative, glides, liquids, and transition region between phones, the nonstationary autoregressive (NAR) hidden Markov model (HMM) is used. The nonstationary AR process is represented by using polynomial functions with a linear combination of M known basis functions. When only noisy signals are available, the estimation problem of noise inevitably arises. By using multiple Kalman filters, the estimation of noise model and gain contour of speech is performed. Noise estimation of the proposed method can eliminate noise from noisy speech to get an enhanced speech signal. Compared to the conventional ARHMM with noise estimation, our proposed NAR-HMM with noise estimation improves the recognition performance about 2-3%.

HMM-based Upper-body Gesture Recognition for Virtual Playing Ground Interface (가상 놀이 공간 인터페이스를 위한 HMM 기반 상반신 제스처 인식)

  • Park, Jae-Wan;Oh, Chi-Min;Lee, Chil-Woo
    • The Journal of the Korea Contents Association
    • /
    • v.10 no.8
    • /
    • pp.11-17
    • /
    • 2010
  • In this paper, we propose HMM-based upper-body gesture. First, to recognize gesture of space, division about pose that is composing gesture once should be put priority. In order to divide poses which using interface, we used two IR cameras established on front side and side. So we can divide and acquire in front side pose and side pose about one pose in each IR camera. We divided the acquired IR pose image using SVM's non-linear RBF kernel function. If we use RBF kernel, we can divide misclassification between non-linear classification poses. Like this, sequences of divided poses is recognized by gesture using HMM's state transition matrix. The recognized gesture can apply to existent application to do mapping to OS Value.

Speech Recognition Based on VQ/NN using Fuzzy (Fuzzy를 이용한 VQ/NN에 기초를 둔 음성 인식)

  • Ann, Tae-Ock
    • The Journal of the Acoustical Society of Korea
    • /
    • v.15 no.6
    • /
    • pp.5-11
    • /
    • 1996
  • This paper is the study for recognizing single vowels of speaker-independent, and we suppose a method of speech recognition using VQ(Vector Quantization)/NN(Neural Network). This method makes a VQ codebook, which is used for obtaining the observation sequence, and then claculates the probability value by comparing each codeword with the data, finally uses these probability values for the input value of the neural network. Korean signle vowels are selected for our recognition experiment, and ten male speakers pronounced eight single vowels ten times. We compare the performance of our method with those of fuzzy VQ/HMM and conventional VQ/NN According to the experiment result, the recognition rate by VQ/NN is 92.3%, by VQ/HMM using fuzzy is 93.8% and by VQ/NN using fuzzy is 95.7%. Therefore, it is shown that recognition rate of speech recognition by fuzzy VQ/NN is better than those of fuzzy VQ/HMM and conventional VQ/HMM because of its excellent learning ability.

  • PDF

The Study of Korean Speech Recognition for Various Continue HMM (다양한 연속밀도 함수를 갖는 HMM에 대한 우리말 음성인식에 관한 연구)

  • Woo, In-Sung;Shin, Chwa-Cheul;Kang, Heung-Soon;Kim, Suk-Dong
    • Journal of IKEEE
    • /
    • v.11 no.2
    • /
    • pp.89-94
    • /
    • 2007
  • This paper is a study on continuous speech recognition in the Korean language using HMM-based models with continuous density functions. Here, we propose the most efficient method of continuous speech recognition for the Korean language under the condition of a continuous HMM model with 2 to 44 density functions. Two voice models were used CI-Model that uses 36 uni-phones and CD-Model that uses 3,000 tri-phones. Language model was based on N-gram. Using these models, 500 sentences and 6,486 words under speaker-independent condition were processed. In the case of the CI-Model, the maximum word recognition rate was 94.4% and sentence recognition rate was 64.6%. For the CD-Model, word recognition rate was 98.2% and sentence recognition rate was 73.6%. The recognition rate of CD-Model we obtained was stable.

  • PDF

Hybrid metrics model to predict fault-proneness of large software systems (대형 소프트웨어 시스템의 결함경향성 예측을 위한 혼성 메트릭 모델)

  • Hong, Euy-Seok
    • The Journal of Korean Association of Computer Education
    • /
    • v.8 no.5
    • /
    • pp.129-137
    • /
    • 2005
  • Criticality prediction models that identify fault-prone spots using system design specifications play an important role in reducing development costs of large systems such as telecommunication systems. Many criticality prediction models using complexity metrics have been suggested. But most of them need training data set for model training. And they are classification models that can only classify design entities into fault-prone group and non fault-prone group. To solve this problem, this paper builds a new prediction model, HMM, using two styled hybrid metrics. HMM has strong point that it does not need training data and it enables comparison between design entities by criticality. HMM is implemented and compared with a well-known prediction model, BackPropagation neural network Model(BPM), considering internal characteristics and accuracy of prediction.

  • PDF

Combining a HMM with a Genetic Algorithm for the Fault Diagnosis of Photovoltaic Inverters

  • Zheng, Hong;Wang, Ruoyin;Xu, Wencheng;Wang, Yifan;Zhu, Wen
    • Journal of Power Electronics
    • /
    • v.17 no.4
    • /
    • pp.1014-1026
    • /
    • 2017
  • The traditional fault diagnosis method for photovoltaic (PV) inverters has a difficult time meeting the requirements of the current complex systems. Its main weakness lies in the study of nonlinear systems. In addition, its diagnosis time is long and its accuracy is low. To solve these problems, a hidden Markov model (HMM) is used that has unique advantages in terms of its training model and its recognition for diagnosing faults. However, the initial value of the HMM has a great influence on the model, and it is possible to achieve a local minimum in the training process. Therefore, a genetic algorithm is used to optimize the initial value and to achieve global optimization. In this paper, the HMM is combined with a genetic algorithm (GHMM) for PV inverter fault diagnosis. First Matlab is used to implement the genetic algorithm and to determine the optimal HMM initial value. Then a Baum-Welch algorithm is used for iterative training. Finally, a Viterbi algorithm is used for fault identification. Experimental results show that the correct PV inverter fault recognition rate by the HMM is about 10% higher than that of traditional methods. Using the GHMM, the correct recognition rate is further increased by approximately 13%, and the diagnosis time is greatly reduced. Therefore, the GHMM is faster and more accurate in diagnosing PV inverter faults.

A hidden Markov model for long term drought forecasting in South Korea

  • Chen, Si;Shin, Ji-Yae;Kim, Tae-Woong
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2015.05a
    • /
    • pp.225-225
    • /
    • 2015
  • Drought events usually evolve slowly in time and their impacts generally span a long period of time. This indicates that the sequence of drought is not completely random. The Hidden Markov Model (HMM) is a probabilistic model used to represent dependences between invisible hidden states which finally result in observations. Drought characteristics are dependent on the underlying generating mechanism, which can be well modelled by the HMM. This study employed a HMM with Gaussian emissions to fit the Standardized Precipitation Index (SPI) series and make multi-step prediction to check the drought characteristics in the future. To estimate the parameters of the HMM, we employed a Bayesian model computed via Markov Chain Monte Carlo (MCMC). Since the true number of hidden states is unknown, we fit the model with varying number of hidden states and used reversible jump to allow for transdimensional moves between models with different numbers of states. We applied the HMM to several stations SPI data in South Korea. The monthly SPI data from January 1973 to December 2012 was divided into two parts, the first 30-year SPI data (January 1973 to December 2002) was used for model calibration and the last 10-year SPI data (January 2003 to December 2012) for model validation. All the SPI data was preprocessed through the wavelet denoising and applied as the visible output in the HMM. Different lead time (T= 1, 3, 6, 12 months) forecasting performances were compared with conventional forecasting techniques (e.g., ANN and ARMA). Based on statistical evaluation performance, the HMM exhibited significant preferable results compared to conventional models with much larger forecasting skill score (about 0.3-0.6) and lower Root Mean Square Error (RMSE) values (about 0.5-0.9).

  • PDF

Composition of Human Breast Milk Microbiota and Its Role in Children's Health

  • Notarbartolo, Veronica;Giuffre, Mario;Montante, Claudio;Corsello, Giovanni;Carta, Maurizio
    • Pediatric Gastroenterology, Hepatology & Nutrition
    • /
    • v.25 no.3
    • /
    • pp.194-210
    • /
    • 2022
  • Human milk contains a number of nutritional and bioactive molecules including microorganisms that constitute the so-called "Human Milk Microbiota (HMM)". Recent studies have shown that not only bacterial but also viral, fungal, and archaeal components are present in the HMM. Previous research has established, a "core" microbiome, consisting of Firmicutes (i.e., Streptococcus, Staphylococcus), Proteobacteria (i.e., Serratia, Pseudomonas, Ralstonia, Sphingomonas, Bradyrhizobium), and Actinobacteria (i.e., Propionibacterium, Corynebacterium). This review aims to summarize the main characteristics of HMM and the role it plays in shaping a child's health. We reviewed the most recent literature on the topic (2019-2021), using the PubMed database. The main sources of HMM origin were identified as the retrograde flow and the entero-mammary pathway. Several factors can influence its composition, such as maternal body mass index and diet, use of antibiotics, time and type of delivery, and mode of breastfeeding. The COVID-19 pandemic, by altering the mother-infant dyad and modifying many of our previous habits, has emerged as a new risk factor for the modification of HMM. HMM is an important contributor to gastrointestinal colonization in children and therefore, it is fundamental to avoid any form of perturbation in the HMM that can alter the microbial equilibrium, especially in the first 100 days of life. Microbial dysbiosis can be a trigger point for the development of necrotizing enterocolitis, especially in preterm infants, and for onset of chronic diseases, such as asthma and obesity, later in life.