• Title/Summary/Keyword: HMGB2

Search Result 26, Processing Time 0.134 seconds

Backbone assignment of HMGB1 A-box and molecular interaction with Hoxc9DBD studied by paramagnetic probe

  • Choi, Ji Woong;Park, Sung Jean
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.25 no.2
    • /
    • pp.17-23
    • /
    • 2021
  • High mobility group protein B1 (HMGB1) is a highly conserved, non-histone, chromatin associated nuclear protein encoded by HMGB1 gene. HMGB1 proteins may be general co-factors in Hox-mediated transcriptional activation that facilitate the access of Hox proteins to specific DNA targets. It is unclear that the exact binding interface of Hoxc9DBD and HMGB1. To identify the interface and binding affinity of Hoxc9DBD and HMGB1 A-box, the paramagnetic probe, MTSL was used in NMR titration experiment. It is attached to the N-terminal end of HMGB1 A-box by reaction with thiol groups. The backbone assignment of HMGB1 A-box was achieved with 3D NMR techinques. The 15N-labeled HMGB1 A-box was titrated with MTSL-labeled Hoxc9DBD respectively. Based on the chemical shift changes we can identify the interacting residues and further map out the binding sites on the protein structure. The NMR titration result showed that the binding interface of HMGB1 A-box is around loop-1 between helix-1 and helix-2. In addition, the additional contacts were found in N- and C-terminus. The N-terminal arm region of Hoxc9DBD is the major binding region and the loop between helix1 and helix2 is the minor binding region.

Proinflammatory Effects of High Mobility Group B1 (HMGB1) Versus LPS and the Mechanism of IL-8 Promoter Stimulation by HMGB1 (High mobility group B1(HMGB1)과 LPS의 염증유발효과 차이의 비교 및 HMGB1에 의한 IL-8 promoter 자극 기전의 규명)

  • Jeon, Eun Ju;Kwak, Hee Won;Song, Ju Han;Lee, Young Woo;Chung, Jae Woo;Choi, Jae Chul;Shin, Jong Wook;Park, In Won;Choi, Byoung Whui;Kim, Jae Yeol
    • Tuberculosis and Respiratory Diseases
    • /
    • v.62 no.4
    • /
    • pp.299-307
    • /
    • 2007
  • Background: High mobility group box 1 (HMGB1) is a novel, late mediator of inflammation. This study compared the pro-inflammatory effects of LPS and HMGB1. The transcriptional factors that play an important role in mediating the HMGB1-induced stimulation of IL-8 were also evaluated. Methods: RAW264.7 cells were stimulated with either LPS (100 ng/ml) or HMGB1 (500 ng/ml). The $TNF-{\alpha}$, MIP-2 and $IL-1{\beta}$ levels in the supernatant were evaluated by ELISA at 0, 2, 4, 8, 12 and 24h after stimulation. An acute lung injury was induced by an injection of LPS (5 mg/kg) or HMGB1 (2.5 mg/kg) into the peritoneum of the Balb/c mice. The lung cytokines and MPO activity were measured at 4h (for LPS) or 24h (for HMGB1) after the injection. The transcriptional factor binding sites for NF-IL6, $NF-{\kappa}B$ and AP-1 in the IL-8 promoter region were artificially mutated. Each mutant was ligated with pIL-6luc and transfected into the RAW264.7 cells. One hour after stimulation with HMGB1 (500 ng/ml), the cell lysate was analyzed for the luciferase activity. Results: The expression of MIP-2, which peaked at 8h with LPS stimulation, increased sequentially until 24h after HMGB1 stimulation. An intraperitoneal injection of HMGB1, which induced a minimal increased in $IL-1{\beta}$ expression, provoked the accumulation of neutrophils the lung. A mutation of AP-1 as well as $NF-{\kappa}B$ in the IL-8 promoter region resulted in a lower luciferase activity after HMGB1 stimulation. Conclusion: The proinflammatory effects of HMGB1, particularly on IL-8, are mediated by both $NF-{\kappa}B$ and AP-1.

Non-histone protein HMGB1 inhibits the repair of damaged DNA by cisplatin in NIH-3T3 murine fibroblasts

  • Yusein-Myashkova, Shazie;Ugrinova, Iva;Pasheva, Evdokia
    • BMB Reports
    • /
    • v.49 no.2
    • /
    • pp.99-104
    • /
    • 2016
  • The nuclear non-histone protein high mobility group box (HMGB) 1 is known to having an inhibitory effect on the repair of DNA damaged by the antitumor drug cisplatin in vitro. To investigate the role of HMGB1 in living cells, we studied the DNA repair of cisplatin damages in mouse fibroblast cell line, NIH-3T3. We evaluated the effect of the post-synthetic acetylation and C-terminal domain of the protein by overexpression of the parental and mutant GFP fused forms of HMGB1. The results revealed that HMGB1 had also an inhibitory effect on the repair of cisplatin damaged DNA in vivo. The silencing of HMGB1 in NIH-3T3 cells increased the cellular DNA repair potential. The increased levels of repair synthesis could be "rescued" and returned to less than normal levels if the knockdown cells were transfected with plasmids encoding HMGB1 and HMGB1 K2A. In this case, the truncated form of HMGB1 also exhibited a slight inhibitory effect.

Transcriptional Repression of High-Mobility Group Box 2 by p21 in Radiation-Induced Senescence

  • Kim, Hyun-Kyung;Kang, Mi Ae;Kim, Mi-Sook;Shin, Young-Joo;Chi, Sung-Gil;Jeong, Jae-Hoon
    • Molecules and Cells
    • /
    • v.41 no.4
    • /
    • pp.362-372
    • /
    • 2018
  • High mobility group box 2 (HMGB2) is an abundant, chromatin-associated, non-histone protein involved in transcription, chromatin remodeling, and recombination. Recently, the HMGB2 gene was found to be significantly downregulated during senescence and shown to regulate the expression of senescent-associated secretory proteins. Here, we demonstrate that HMGB2 transcription is repressed by p21 during radiation-induced senescence through the ATM-p53-p21 DNA damage signaling cascade. The loss of p21 abolished the downregulation of HMGB2 caused by ionizing radiation, and the conditional induction of p21 was sufficient to repress the transcription of HMGB2. We also showed that the p21 protein binds to the HMGB2 promoter region, leading to sequestration of RNA polymerase and transcription factors E2F1, Sp1, and p300. In contrast, NF-Y, a CCAAT box-binding protein complex, is required for the expression of HMGB2, but NF-Y binding to the HMGB2 promoter was unaffected by either radiation or p21 induction. A proximity ligation assay results confirmed that the chromosome binding of E2F1 and Sp1 was inhibited by p21 induction. As HMGB2 have been shown to regulate premature senescence by IR, targeting the p21-mediated repression of HMGB2 could be a strategy to overcome the detrimental effects of radiation-induced senescence.

Inhibitory Effects of Lycopene on the Expression of Pro-inflammatory Genes in Human Vascular Endothelial Cells (혈관내피세포에서 라이코펜이 염증유전자 발현에 미치는 영향)

  • Kim, Tae-Hoon;Bae, Jong-Sup
    • Food Science and Preservation
    • /
    • v.19 no.2
    • /
    • pp.287-293
    • /
    • 2012
  • Lycopene, found in tomatoes and tomato products, has antioxidant, anticancer, and anti-inflammatory effects. High-mobility-group box 1 (HMGB1) mediates the pro-inflammatory responses in several inflammatory diseases. In this study, the potential roles of lycopene in the HMGB1-mediated pro-inflammatory gene expressions in the primary human-umbilical-vein endothelial cells (HUVECs) were investigated. The data showed that HMGB1 upregulated the expressions of monocyte chemotactic protein 1 (MCP-1), interleukin-6 (IL-6), secretory phospholipase A2 (sPLA2)-IIA, and prostaglandin E2 (PGE2). Lycopene pre-incubation for 6 h decreased the HMGB1-mediated induction of MCP-1, IL-6, sPLA2-IIA, and PGE2. Further study revealed that the inhibitory effects of lycopene on the HMGB-1 induced expression of pro-inflammatory genes were mediated by the inhibition of two important inflammatory cytokines: tumor necrosis factor (TNF)-${\alpha}$ and nuclear factor (NF)-${\kappa}B$. These results suggest that HMGB1 upregulated the expression of pro-inflammatory genes and lycopene inhibited HMGB-1-induced pro-inflammatory genes by inhibiting TNF-${\alpha}$ and NF-${\kappa}B$. This finding will serve as an important evidence in the development of a new medicine for the treatment of inflammatory diseases.

High-mobility Group Box 1 Induces the Epithelial-mesenchymal Transition, Glycolytic Switch, and Mitochondrial Repression via Snail Activation (HMGB1/Snail cascade에 의한 epithelial-mesenchymal transition 및 glycolytic switch, mitochondrial repression 유도)

  • Lee, Su Yeon;Ju, Min Kyung;Jeon, Hyun Min;Kim, Cho Hee;Park, Hye Gyeong;Kang, Ho Sung
    • Journal of Life Science
    • /
    • v.29 no.11
    • /
    • pp.1179-1191
    • /
    • 2019
  • Cancer cells undergo the epithelial-mesenchymal transition (EMT) and show unique oncogenic metabolic phenotypes such as the glycolytic switch (Warburg effect) which are important for tumor development and progression. The EMT is a critical process for tumor invasion and metastasis. High-mobility group box 1 (HMGB1) is a chromatin-associated nuclear protein, but it acts as a damage-associated molecular pattern molecule when released from dying cells and immune cells. HMGB1 induces the EMT, as well as invasion and metastasis, thereby contributing to tumor progression. Here, we show that HMGB1 induced the EMT by activating Snail. In addition, the HMGB1/Snail cascade was found induce a glycolytic switch. HMGB1 also suppressed mitochondrial respiration and cytochrome c oxidase (COX) activity by a Snail-dependent reduction in the expression of the COX subunits COXVIIa and COXVIIc. HMGB1 also upregulated the expression of several key glycolytic enzymes, including hexokinase 2 (HK2), phosphofructokinase-2/fructose-2,6-bisphosphatase 2 (PFKFB2), and phosphoglycerate mutase 1 (PGAM1), in a Snail-dependent manner. However, HMGB1 was found to regulate some other glycolytic enzymes including lactate dehydrogenases A and B (LDHA and LDHB), glucose transporter 1 (GLUT1), and monocarboxylate transporters 1 and 4 (MCT1 and 4) in a Snail-independent manner. Transfection with short hairpin RNAs against HK2, PFKFB2, and PGAM1 prevented the HMGB1-induced EMT, indicating that glycolysis is associated with HMGB1-induced EMT. These findings demonstrate that HMGB1 signaling induces the EMT, glycolytic switch, and mitochondrial repression via Snail activation.

29-kDa FN-f inhibited autophagy through modulating localization of HMGB1 in human articular chondrocytes

  • Hwang, Hyun Sook;Choi, Min Ha;Kim, Hyun Ah
    • BMB Reports
    • /
    • v.51 no.10
    • /
    • pp.508-513
    • /
    • 2018
  • Fibronectin fragments found in the synovial fluid of patients with osteoarthritis (OA) induce the catabolic responses in cartilage. Nuclear high-mobility group protein Box 1 (HMGB1), a damage-associated molecular pattern, is responsible for the regulation of signaling pathways related to cell death and survival in response to various stimuli. In this study, we investigated whether changes induced by 29-kDa amino-terminal fibronectin fragment (29-kDa FN-f) in HMGB1 expression influences the pathogenesis of OA via an HMGB1-modulated autophagy signaling pathway. Human articular chondrocytes were enzymatically isolated from articular cartilage. The level of mRNA was measured by quantitative real-time PCR. The expression of proteins was examined by western blot analysis, immnunofluorescence assay, and enzyme-linked immunosorbent assay. Interaction of proteins was evaluated by immunoprecipitation. The HMGB1 level was significantly lower in human OA cartilage than in normal cartilage. Although 29-kDa FN-f significantly reduced the HMGB1 expression at the mRNA and protein levels 6 h after treatment, the cytoplasmic level of HMGB1 was increased in chondrocytes treated with 29-kDa FN-f, which significantly inhibited the interaction of HMGB1 with Beclin-1, increased the interaction of Bcl-2 with Beclin-1, and decreased the levels of Beclin-1 and phosphorylated Bcl-2. In addition, the level of microtubule-associated protein 1 light chain 3-II, an autophagy marker, was down-regulated in chondrocytes treated with 29-kDa FN-f, whereas the effect was antagonized by mTOR knockdown. Furthermore, prolonged treatment with 29-kDa FN-f significantly increased the release of HMGB1 into the culture medium. These results demonstrated that 29-kDa FN-f inhibits chondrocyte autophagy by modulating the HMGB1 signaling pathway.

Ginsenosides Inhibit HMGB1-induced Inflammatory Responses in HUVECs and in Murine Polymicrobial Sepsis

  • Lee, Wonhwa;Ku, Sae-Kwang;Jeong, Tae Cheon;Lee, Sangkyu;Bae, Jong-Sup
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.10
    • /
    • pp.2955-2962
    • /
    • 2014
  • Asian ginseng is used as a treatment for cardiovascular diseases, ischemia, and cancers. High mobility group box 1 (HMGB1) protein acts as a late mediator of severe vascular inflammatory conditions. However, the effect of ginsenosides from Asian ginseng on HMGB1-induced inflammatory responses has not been studied. We addressed this question by monitoring the effects of ginsenoside treatment on lipopolysaccharide (LPS) and cecal ligation and puncture (CLP)-mediated release of HMGB1, and HMGB1-mediated regulation of proinflammatory responses. Ginsenoside treatment suppressed LPS-mediated release of HMGB1 and HMGB1-mediated cytoskeletal rearrangements. Ginsenosides also inhibited HMGB1-mediated inflammatory responses. In addition, ginsenosides inhibited the production of tumor necrosis factor-${\alpha}$ (TNF-${\alpha}$) and activation of protein kinase B (Akt), nuclear factor-${\kappa}B$ (NF-${\kappa}B$), and extracellular-regulated kinases (ERK) 1/2 by HMGB1. Ginsenosides also decreased CLP-induced release of HMGB1, production of interleukin (IL) $1{\beta}/6$, and mortality. These results suggested that ginsenosides may be potential therapeutic agents for treatment of vascular inflammatory diseases through inhibition of the HMGB1 signaling pathway.

SARS-CoV-2 Infection Induces HMGB1 Secretion Through Post-Translational Modification and PANoptosis

  • Man Sup Kwak;Seoyeon Choi;Jiseon Kim;Hoojung Lee;In Ho Park;Jooyeon Oh;Duong Ngoc Mai;Nam-Hyuk Cho;Ki Taek Nam;Jeon-Soo Shin
    • IMMUNE NETWORK
    • /
    • v.23 no.3
    • /
    • pp.25.1-25.17
    • /
    • 2023
  • Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection induces excessive pro-inflammatory cytokine release and cell death, leading to organ damage and mortality. High-mobility group box 1 (HMGB1) is one of the damage-associated molecular patterns that can be secreted by pro-inflammatory stimuli, including viral infections, and its excessive secretion levels are related to a variety of inflammatory diseases. Here, the aim of the study was to show that SARS-CoV-2 infection induced HMGB1 secretion via active and passive release. Active HMGB1 secretion was mediated by post-translational modifications, such as acetylation, phosphorylation, and oxidation in HEK293E/ACE2-C-GFP and Calu-3 cells during SARS-CoV-2 infection. Passive release of HMGB1 has been linked to various types of cell death; however, we demonstrated for the first time that PANoptosis, which integrates other cell death pathways, including pyroptosis, apoptosis, and necroptosis, is related to passive HMGB1 release during SARS-CoV-2 infection. In addition, cytoplasmic translocation and extracellular secretion or release of HMGB1 were confirmed via immunohistochemistry and immunofluorescence in the lung tissues of humans and angiotensin-converting enzyme 2-overexpressing mice infected with SARS-CoV-2.

Identification of specifically activated angiogenic molecules in HMGB-1-induced angiogenesis

  • Kim, Won Kyu;Kwon, Yujin;Park, Minhee;Yun, Seongju;Kwon, Ja-Young;Kim, Hoguen
    • BMB Reports
    • /
    • v.50 no.11
    • /
    • pp.590-595
    • /
    • 2017
  • High-mobility group box-1 (HMGB-1) is expressed in almost all cells, and its dysregulated expression correlates with inflammatory diseases, ischemia, and cancer. Some of these conditions accompany HMGB-1-mediated abnormal angiogenesis. Thus far, the mechanism of HMGB-1-induced angiogenesis remains largely unknown. In this study, we performed time-dependent DNA microarray analysis of endothelial cells (ECs) after HMGB-1 or VEGF treatment. The pathway analysis of each gene set upregulated by HMGB-1 or VEGF showed that most HMGB-1-induced angiogenic pathways were also activated by VEGF, although the activation time and gene sets belonging to the pathways differed. In addition, HMGB-1 upregulated some VEGFR signaling-related angiogenic factors including EGR1 and, importantly, novel angiogenic factors, such as ABL2, CEACAM1, KIT, and VIPR1, which are reported to independently promote angiogenesis under physiological and pathological conditions. Our findings suggest that HMGB-1 independently induces angiogenesis by activating HMGB-1-specific angiogenic factors and also functions as an accelerator for VEGF-mediated conventional angiogenesis.