• Title/Summary/Keyword: HMG-CoA lyase

Search Result 6, Processing Time 0.024 seconds

Insertion Mutation in HMG-CoA Lyase Increases the Production Yield of MPA through Agrobacterium tumefaciens-Mediated Transformation

  • Dong, Yuguo;Zhang, Jian;Xu, Rui;Lv, Xinxin;Wang, Lihua;Sun, Aiyou;Wei, Dongzhi
    • Journal of Microbiology and Biotechnology
    • /
    • v.26 no.11
    • /
    • pp.1924-1932
    • /
    • 2016
  • Mycophenolic acid (MPA) is an antibiotic produced by Penicillium brevicompactum. MPA has antifungal, antineoplastic, and immunosuppressive functions, among others. ${\beta}-Hydroxy-{\beta}-methylglutaryl-CoA$ (HMG-CoA) lyase is a key enzyme in the bypass metabolic pathway. The inhibitory activity of HMG-CoA lyase increases the MPA biosynthetic flux by reducing the generation of by-products. In this study, we cloned the P. brevicompactum HMG-CoA lyase gene using the thermal asymmetric interlaced polymerase chain reaction and gene walking technology. Agrobacterium tumefaciens-mediated transformation (ATMT) was used to insert a mutated HMG-CoA lyase gene into P. brevicompactum. Successful insertion of the HMG-CoA lyase gene was confirmed by hygromycin screening, PCR, Southern blot analysis, and enzyme content assay. The maximum MPA production by transformants was 2.94 g/l. This was 71% higher than wild-type ATCC 16024. Our results demonstrate that ATMT may be an alternative practical genetic tool for directional transformation of P. brevicompactum.

Defects in Ketone Body Metabolism and Pregnancy

  • Fukao, Toshiyuki
    • Journal of The Korean Society of Inherited Metabolic disease
    • /
    • v.18 no.3
    • /
    • pp.69-77
    • /
    • 2018
  • Pregnancy and delivery pose a high risk of developing metabolic decompensation in women with defects of ketone body metabolism. In this review, the available reported cases in pregnancy are summarized. It is very important to properly manage women with defects of ketone body metabolism during pregnancy, especially nausea and vomiting in the first trimester of pregnancy, and during labor and delivery. Pregnant women with deficiencies of HMG-CoA lyase or succinyl-CoA:3-ketoacid CoA transferase (SCOT) often experience metabolic decompensations with nausea and vomiting of pregnancy, often requiring hospitalization. For successful delivery and to reduce stresses, vaginal delivery with epidural anesthesia or elective cesarean delivery with epidural or spinal anesthesia are recommended for women with HMG-CoA lyase and SCOT deficiency. In beta-ketothiolase deficiency, four pregnancies in three patients had favorable outcomes without severe metabolic problems.

  • PDF

Organic acidemias in Korea (한국의 유기산혈증)

  • Lee, Hong Jin
    • Journal of The Korean Society of Inherited Metabolic disease
    • /
    • v.11 no.1
    • /
    • pp.52-73
    • /
    • 2011
  • Since we have started organic acid analysis on Jul. 1997, we have been collecting data about organic acidemias in Korea. The data presented here is our 3 years experience in organic acid analysis. We have collected 712 samples from major university hospitals all over the Korea, large enough for relatively accurate incidence of organic acid disorders. We are using solvent extraction method with ethylacetate, MSTFA for derivatization and quantitation of 83 organic acids simultaneously. Out of 712 patients sample, 498 patients sample (70%) showed no evidence of organic acid abnormalities. Out of 214 remaining samples we have found very diverse disorders such as methylmalonic aciduria(6), propionic aciduria (10), biotinidase deficiency (6), maple syrup urine disease (3), isovaleric aciduria (4), tyrosinemia type II (4), tyrosinemia type IV (1), glutaric aciduria type I (1), glutaric aciduria type II (22), 3-methylglutaconic aciduria type I (3), 3-methylglutaconic aciduria type III (7), HMG-CoA lyase deficiency (1), hyperglyceroluria (2), cytosolic 3-ketothiolase deficiency (55), mitochondrial 3-ketothiolase deficiency (3), 3-hydroxyisobutyric aciduria (2), L-2-hydroxyglutaric aciduria (2), fumaric aciduria (2), lactic aciduria with combined elevation of pyruvate (most likely PDHC deficiency) (28), lactic aciduria without combined elevation of pyruvate (most likely mitochondrial respiratory chain disorders) (35), SCAD deficiency (3), MCAD deficiency (1), 3-methylcrotonylglycineuria (1), orotic aciduria (most likely urea cycle disorders) (7) and 2-methylbranched chain acyl-CoA dehydrogenase deficiency (1). In conclusion, though the incidence of indivisual organic acidemia is low, the incidence of overall organic acidemia is relatively high in Korea. Most of the patients showed some signs of neurological dysfunction. In other words, organic acid analysis should be included in the diagnostic work up of all neurological dysfunctions.

  • PDF

Organic Acidopathies as Etiologic Diseases of Seizure Disorders in Korean Childhood and Adolescent Age Group (한국인 소아청소년기 발작의 원인질환으로서의 유기산대사이상질환)

  • Kim, Hui Kwon;Lee, Jong Yoon;Lee, Ye Seung;Bae, Eun Joo;Oh, Phil Soo;Park, Won Il;Lee, Hong Jin
    • Journal of The Korean Society of Inherited Metabolic disease
    • /
    • v.12 no.1
    • /
    • pp.23-34
    • /
    • 2012
  • Purpose: Acute symptomatic seizures are caused by structural changes, inflammation or metabolic changes of brain, such as tumor, stroke, meningitis, encephalitis and metabolic disorders. Inherited metabolic disorders that can cause seizures are organic acidopathies, lysosomal storage disorders, peroxisomal disorders and mineral disorders. We have done this study to find out the importance of organic acidopathies causing seizure disorders in Korean childhood and adolescent patients. Method: Retrograde analysis for 1,306 patients with seizure disorders whose clinical informations are available and have done urine organic acid analysis for 5 years period, between Jan. 1st 2007 to Dec. 31th 2011. Statistical analysis was done with Student's t test using SPSS. Result: Out of 1,306 patients, 665 patients (51%) showed abnormalities on urine organic acid analysis. The most frequent disease was mitochondrial respiratory chain disorders (394, 30.1%), followed by mandelic aciduria (127, 9.7%), ketolytic defects (81, 6.2%), 3-hydroxyisobutyric aciduria (19, 1.4%), glutaric aciduria type II (10, 0.8%), ethylmalonic aciduria (4), propionic aciduria (4), methylmalonic aciduria (3), glutaric aciduria type I (3), pyruvate dehydrogenase deficiency (3), pyruvate carboxylase deficiency (3), isovaleric aciduria (2), HMG-CoA lyase deficiency (2), 3-methylcrotonylglycinuria (2), fatty acid oxidation disorders (2), fumaric aciduria (1), citrullinemia (1), CPS deficiency (1), MCAD deficiency (1). Conclusion: On neonatal period, mandelic aciduria due to infection was found relatively frequently. Mitochondrial disorders are most frequent etiologic disease on all age group, followed by ketolytic defects and various organic acidopathies. The number and diversities of organic acidopathies emphasize meticulous evaluation of basic routine laboratory examinations and organic acid analysis with initial sample on every seizure patient.

  • PDF

Organic Acidopathies as Etiologic Diseases of Developmental Delay in Korean Childhood and Adolescent Age Group (한국인 소아청소년기 발달지연의 원인질환으로서의 유기산대사이상질환)

  • Lee, Jong Yoon;Lee, Ye Seung;Choi, Joong Wan;Bae, Eun Joo;Park, Won Il;Oh, Phil Soo;Lee, Hong Jin
    • Journal of The Korean Society of Inherited Metabolic disease
    • /
    • v.12 no.2
    • /
    • pp.85-93
    • /
    • 2012
  • Purpose: Developmental delay is caused by very diverse etiologic diseases. Most chronic disorders has some influence on development. Chronic or acute disorders of CNS are main etiologic diseases of developmental delay. Up to now, over 60 diseases are included in organic acidopathies and most of them causes acute or chronic recurrent CNS damage and developmental delay. We have done this study to find out the importance of organic acidopathies causing developmental delay in Korean childhood and adolescent patients. Method: Retrograde analysis for 738 patients with developmental delay whose clinical informations are available and have done urine organic acid analysis for 5 years period, between Jan. 1st 2007 to Dec. 31th 2011. Statistical analysis was done with Student's t test using SPSS. Result: Out of 738 patients, 340 patients (46.1%) showed abnormalities on urine organic acid analysis. The most frequent disease was mitochondrial respiratory chain disorders (MRCD) (253, 34.3%), followed by ketolytic defects(39, 5.3%), 3-hydroxyisobutyric aciduria (26, 3.5%), glutaric aciduria type II (8, 1.1%), pyruvate dehydrogenase deficiency (3, 0.4%), 3-methylglutaric aciduria (2, 0.3%), glutaric aciduria type I (2, 0.3%), ethylmalonic aciduria (1, 0.15%), methylmalonic aciduria (1, 0.15%), HMG-CoA lyase deficiency (1, 0.15%), 3-methylcrotonylglycinuria (1, 0.15%), fatty acid oxidation disorders(1, 0.15%) and FAOD (1, 0.15%). Conclusion: Mitochondrial disorders are most frequent etiologic disease on all age group, followed by ketolytic defects and various organic acidopathies. The number and diversities of organic acidopathies emphasize meticulous evaluation of basic routine laboratory examinations and organic acid analysis with initial sample on every developmental patient.

  • PDF

Inherited metabolic diseases in the urine organic acid analysis of complex febrile seizure patients (복합 열성경련 환자의 소변 유기산 분석에서 나타난 유전대사질환)

  • Cheong, Hee Jeong;Kim, Hye Rim;Lee, Seong Soo;Bae, Eun Joo;Park, Won Il;Lee, Hong Jin;Choi, Hui Chul
    • Clinical and Experimental Pediatrics
    • /
    • v.52 no.2
    • /
    • pp.199-204
    • /
    • 2009
  • Purpose : Seizure associated with fever may indicate the presence of underlying inherited metabolic diseases. The present study was performed to investigate the presence of underlying metabolic diseases in patients with complex febrile seizures, using analyses of urine organic acids. Method : We retrospectively analyzed and compared the results of urine organic acid analysis with routine laboratory findings in 278 patients referred for complex febrile seizure. Results : Of 278 patients, 132 had no abnormal laboratory findings, and 146 patients had at least one of the following abnormal laboratory findings: acidosis (n=58), hyperammonemia (n=55), hypoglycemia (n=21), ketosis (n=12). Twenty-six (19.7 %) of the 132 patients with no abnormal findings and 104 (71.2%) of the 146 patients with statistically significant abnormalities showed abnormalities on the organic acid analysis (P<0.05). Mitochondrial respiratory chain disorders (n=23) were the most common diseases found in the normal routine laboratory group, followed by PDH deficiency (n=2) and ketolytic defect (n=1). In the abnormal routine laboratory group, mitochondrial respiratory chain disorder (n=29) was the most common disease, followed by ketolytic defects (n=27), PDH deficiency (n=9), glutaric aciduria type II (n=9), 3-methylglutaconic aciduria type III (n=6), biotinidase deficiency (n=5), propionic acidemia (n=4), methylmalonic acidemia (n=2), 3-hydroxyisobutyric aciduria (n=2), orotic aciduria (n=2), fatty acid oxidation disorders (n=2), 2-methylbranched chain acyl CoA dehydrogenase deficiency (n=2), 3-methylglutaconic aciduria type I (n=1), maple syrup urine disease (n=1), isovaleric acidemia (n=1), HMG-CoA lyase deficiency (n=1), L-2-hydroxyglutaric aciduria (n=1), and pyruvate carboxylase deficiency (n=1). Conclusion : These findings suggest that urine organic acid analysis should be performed in all patients with complex febrile seizure and other risk factors for early detection of inherited metabolic diseases.