• Title/Summary/Keyword: HIT solar cell

Search Result 27, Processing Time 0.033 seconds

AFORS HET Simulation for High Efficiency of HIT Solar Cell (AFORS HET 프로그램을 이용한 HIT Cell 태양전지 고 효율화 방안)

  • Lim, Hyun-Jung;Heo, Jung-Kyu;Yi, Jun-Sin
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.11a
    • /
    • pp.431-432
    • /
    • 2008
  • HIT Solar Cell은 단결정 실리콘 웨이퍼가 초박막 amorphos 실리콘 층으로 싸여있는 구조이다. HIT Solar Cell에서 amorphos 실리콘의 두께와 도핑 농도는 태양전지의 효율을 결정하는 매우 중요한 요인이다. 본 논문에서는 높은 효율을 갖는 태양전지 설계를 위해 AFORS HET 프로그램을 이용하여 TCO_a-Si:H(p)_a-Si:H(i)_c-Si(n)_Al 구조를 설계했다. 후에 a-Si:H(p)의 두께와 a-Si:H(i) 의 두께를 가변하며 효율을 측정하였고, p-i-n 구조에서 n+ 층을 추가함에 따라 변하는 효율을 측정하였다. 최적화 한 결과 $V_{oc}$ = 693mV, $J_{sc}$ = 3891mA/$cm^{-2}$, FF = 8363%, $E_{ff}$ = 22.55% 의 고효율을 얻었다.

  • PDF

Diode Equivalent Parameters of Solar Cell

  • Iftiquar, Sk Md;Dao, Vinh Ai;Yi, Junsin
    • Current Photovoltaic Research
    • /
    • v.3 no.4
    • /
    • pp.107-111
    • /
    • 2015
  • Current characteristic curve of an illuminated solar cell was used to determine its reverse saturation current density ($J_0$), ideality factor (n) and resistances, by using numerical diode simulation. High efficiency amorphous silicon, heterojunction crystalline Si (HIT), plastic and organic-inorganic halide perovskite solar cell shows n=3.27 for a-Si and n=2.14 for improved HIT cell as high and low n respectively, while the perovskite and plastic cells show n=2.56 and 2.57 respectively. The $J_0$ of these cells remain within $7.1{\times}10^{-7}$ and $1.79{\times}10^{-8}A/cm^2$ for poorer HIT and improved perovskite solar cell respectively.

Transmittance and work function enhancement of RF magnetron sputtered ITO:Zr films for amorphous/crystalline silicon heterojunction solar cell

  • Kim, Yongjun;Hussain, Shahzada Qamar;Kim, Sunbo;Yi, Junsin
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.295-295
    • /
    • 2016
  • Recently, TCO films with low carrier concentration, high mobility and high work function are proposed beneficial as front electrode in HIT solar cell due to free-carrier absorption in NIR wavelength region and low Schottky barrier height in the front TCO/a-Si:H(p) interface. We report high transmittance and work function zirconium-doped indium tin oxide (ITO:Zr) films with various plasma (Ar/O2 and Ar) conditions. The role of (Ar/O2) plasma was to enhance the work function of the ITO:Zr films whereas the pure Ar plasma based ITO:Zr showed good electrical properties. The RF magnetron sputtered ITO:Zr films with low resistivity and high transmittance were employed as front electrode in HIT solar cells, yield the best performance of 18.15% with an open-circuit voltage of 710 eV and current density of 34.63 mA/cm2. The high work function ITO:Zr films can be used to modify the front barrier height of HIT solar cell.

  • PDF

Highly conductive and transparent ITO:Zr films for amorphous/crystalline silicon heterojnction solar cell

  • Kim, Yongjun;Hussain, Shahzada Quamar;Kim, Sunbo;Yi, Junsin
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.296-296
    • /
    • 2016
  • ITO films doped with a small amount of high-permittivity materials not only retain the basic properties of ITO films but also improve some of their properties. We report the highly conductive and transparent (ITO:Zr) films with various substrate (RT to 300oC) temperatures on glass substrate for the HIT solar cell applications. We observed a decrease in sheet resistance from 36 to $11.8{\Omega}/{\Box}$ with the increasing substrate temperature from RT to 300oC, respectively. The ITO:Zr films showed also lowest resistivity of $1.38{\times}10-4{\Omega}.cm$ and high mobility of 42.37cm-3, respectively. The surface and grain boundaries are improved with the increase of substrate temperature as shown by SEM and AFM surface morphologies. The highly conductive and transparent ITO:Zr films were employed as front electrode in HIT solar cell and the best performance of device was found to be Voc = 710 mV, Jsc = 33.70 mA/cm2, FF = 0.742, ${\eta}=17.76%$ at the substrate temperature of $200^{\circ}C$.

  • PDF

AFORS HET Simulation for Optimization of High Efficiency HIT Solar Cell (고효율 HIT Solar Cell 제작을 위한 AFORS HET 시뮬레이션 실험)

  • Cho, Soo-Hyun;Heo, Jong-Kyu;Yi, Jun-Sin
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.11a
    • /
    • pp.450-451
    • /
    • 2008
  • Amorphous silicon Solar cell has n-i-p structure in general, and each layer's thickness and doping concentration are very important factors which are as influential on efficiency of salar cell. Using AFORS HET simulation to get the high efficiency, by adjusting n layer's thickness and doping concentration, p layer's doping concentration. The optimized values are a-Si:H(n)'s thickness of 1nm, a-Si:H(n)r's doping concentration of $2\times10^{20}cm^{-3}$, a-Si:H(p+)r's doping concentration of $1\times10^{19}cm^{-3}$. After optimization, the solar cell shows $V_{oc}$=679.5mV, $J_{sc}$=39.02mA/$cm^2$, FF=83.71%, and a high Efficiency=22.21%. Though this study, we can use this study for planning or manufacturing solar cell which has high efficiency.

  • PDF

Operating AFORS HET Simulation for Optimize of HIT Cell (HIT Cell 최적화를 위한 AFORS HET 시뮬레이션 실행)

  • You, Ho-Jun
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.11a
    • /
    • pp.448-449
    • /
    • 2008
  • HIT(Heterojunction with intrinsic thin layer) solar cell은 결정 실리콘 (c-Si)을 n-type으로 제작시 수율이 어렵고 결정 실리콘 (c-Si)을 p-type위에 제조하는 것이 보다 보편적인 방법이므로 베이스의 결정 실리콘에는 p-type을, 그 위에는 진성 층(intrinsic layer) 그리고 반투명 전극의 아래에 제조되는 비정질 실리콘 (a-Si)을 n-type으로 하여 베이스 층과 TCO 후면 층의 두께, 도핑 농도 (doping concentration)와의 관계를 확인하여 본다.

  • PDF

The analysis of temperature and light intensity characteristics of PV modules with solar cell type (Cell-Type에 따른 PV모듈의 일사강도와 온도 특성 비교)

  • Bae, Jong-Guk;Kim, Kyung-Soo;Kang, Gi-Hwan;Yu, Gwon-Jong;Ahn, Hyung-Gun;Han, Deuk-Young
    • Proceedings of the KIEE Conference
    • /
    • 2011.07a
    • /
    • pp.1316-1317
    • /
    • 2011
  • This paper presents analysis of temperature and light intensity characteristics of PV modules with solar cell type. Taking the effect of sunlight irradiance on the cell temperature, the first experiment takes ambient temperature as reference input and uses the solar insolation as a unique varying parameter. Then taking the effect of the cell temperature on sunlight irradiance, the second experiment takes 1000W/$m^2$ as reference input and uses the cell temperature as a unique varying parameter. As a result, varying sunlight irradiance, the Cell-Type with the smallest change in output is HIT and the Cell-Type with the biggest change in output is a-Si. Varying the cell temperature, the Cell-Type with the smallest change in output is a-Si and the Cell-Type with the biggest change in output is Single-Si. And considering both temperature and light intensity characteristics, the Cell-Type with the smallest change in output is HIT.

  • PDF

A Study on the Selective Hole Carrier Extraction Layer for Application of Amorphous/crystalline Silicon Heterojunction Solar Cell (이종접합 실리콘 태양전지 적용을 위한 선택적 전하접합 층으로의 전이금속산화물에 관한 연구)

  • Kim, Yongjun;Kim, Sunbo;Kim, Youngkuk;Cho, Young Hyun;Park, Chang-kyun;Yi, Junsin
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.30 no.3
    • /
    • pp.192-197
    • /
    • 2017
  • Hydrogenated Amorphous Silicon (a-Si:H) is used as an emitter layer in HIT (heterojunction with Intrinsic Thin layer) solar cells. Its low band gap and low optical properties (low transmittance and high absorption) cause parasitic absorption on the front side of a solar cell that significantly reduces the solar cell blue response. To overcome this, research on CSC (carrier Selective Contacts) is being actively carried out to reduce carrier recombination and improve carrier transportation as a means to approach the theoretical efficiency of silicon solar cells. Among CSC materials, molybdenum oxide ($MoO_x$) is most commonly used for the hole transport layer (HTL) of a solar cell due to its high work function and wide band gap. This paper analyzes the electrical and optical properties of $MoO_x$ thin films for use in the HTL of HIT solar cells. The optical properties of $MoO_x$ show better performance than a-Si:H and ${\mu}c-SiO_x:H$.

Enhancing Solar Cell Properties of Heterojunction Solar Cell in Amorphous Silicon Carbide (수광층의 카바이드 함량 변화에 따른 실리콘 이종접합 태양전지 특성 변화)

  • Kim, Hyunsung;Kim, Sangho;Lee, Youngseok;Jeong, Jun-Hui;Kim, Yongjun;Dao, Vinh Ai;Yi, Junsin
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.29 no.6
    • /
    • pp.376-379
    • /
    • 2016
  • In this paper, the efficiency improvement of the heterojunction with intrinsic thin layer (HIT) solar cells is obtained by optimization process of p-type a-SiC:H as emitter. The optoelectronic of p-type a-SiC:H layers including the optical band-gap and conductivity under the methane gas content variation is conducted in detail. A significant increase in the Jsc by $1mA/cm^2$ and Voc by 30 mV are attributed to enhanced photon-absorption due to broader band-gap of p-a-SiC:H and reduced band-offsets at p-side interface, respectively of HIT solar cells.

Advances in Crystalline Silicon Solar Cell Technology

  • Lee, Hae-Seok;Park, Hyomin;Kim, Donghwan;Kang, Yoonmook
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2015.08a
    • /
    • pp.82-82
    • /
    • 2015
  • Industrial crystalline silicon (c-Si) solar cells with using a screen printing technology share the global market over 90% and they will continue to be the same for at least the next decade. It seems that the $2^{nd}$ generation and the $3^{rd}$ generation technologies have not yet demonstrated competitiveness in terms of performance and cost. In 2014, new world record efficiency 25.6% (Area-$143.7cm^2$, Voc-0.740V, $Jsc-41.8mA/cm^2$, FF-0.827) was announced from Panasonic and its cell structure is Back Contact $HIT^*$ c-Si solar cell. Here, amorphous silicon passivated contacts were newly applied to back contact solar cell. On the other hand, 24.9% $TOPCon^{**}$ cell was announced from Fraunhofer ISE and its key technology is an excellent passivation quality applying tunnel oxide (<2 nm) between metal and silicon or emitter and base. As a result, to realize high efficiency, high functional technologies are quite required to overcome a theoretical limitation of c-Si solar cell efficiency. In this presentation, Si solar cell technology summarized in the International Technology Roadmap for Photovoltaics ($^{***}ITRPV$ 2014) is introduced, and the present status of R&D associated with various c-Si solar cell technologies will be reviewed. In addition, national R&D projects of c-Si solar cells to be performed by Korea University are shown briefly.

  • PDF