• Title/Summary/Keyword: HILS 시스템

Search Result 168, Processing Time 0.027 seconds

Torque Ripple Reduction Method of Multi-phase BLDC Motor Drive Systems under Open Fault Conditions (다상 BLDC 모터 드라이브 시스템의 개방 고장 시 토크 리플 저감 방법)

  • Park, Hyeoncheol;Suh, Yongsug
    • Proceedings of the KIPE Conference
    • /
    • 2020.08a
    • /
    • pp.52-54
    • /
    • 2020
  • 다상 BLDC 모니터는 높은 효율, 단위 전류당 높은 토크 밀도 및 비교적 쉬운 제어 특성으로 인해 동일 크기, 동일 무게에서 더 높은 출력을 요구하는 대형 트랙션 또는 선박 추진 응용 분야에서 점점 더 많이 사용되고 있다. 선박 등의 대용량 추진 시스템은 안정적인 운전 성능을 위해 모터의 일부 상 고장의 경우에도 시스템의 안정적인 동작이 중요한 이슈가 되고 있다. 본 논문에서는 모터의 한 상에서 고장이 발생한 경우 BLDC 모터의 정상인 상 전류의 위상각을 제어하여 토크 리플을 저감하는 제어 방법을 제안한다. 제안된 방법은 토크 리플에 큰 영향을 미치는 출력 토크의 2차 고조파 성분의 합이 영이 되도록 정상인 상 전류의 위상각을 제어하여 가능한 범위 내에서 최대 출력 토크를 얻음과 동시에 토크 리플 성분을 최소화한다. 본 논문에서 제안한 방법은 12상 BLDC 모터의 HILs 시뮬레이션을 통해 검증하였다.

  • PDF

Architecture for Simulink/Stateflow Model Based Test Case Generation Considering Feedback (피드백을 고려한 테스트 케이스 생성 시스템 구조)

  • Choi, WooWon;Chung, Kihyun;Choi, Kyunghee
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.6 no.7
    • /
    • pp.361-370
    • /
    • 2017
  • This paper proposes the architecture of test case generator that can generate test cases, considering feedback signals from subsystems controlled by an embedded system. In general, a closed system decides the next test input to its subsystem under its control referencing feedback signals from its subsystem. In such systems, it is hard to use the typical test cases generated without referencing feedback. The architecture proposed in this paper re-produces test cases in real time using feedback signals. The architecture is implemented and its effectiveness is verified through experimenting a demo system.

Evaluation of the Friction Coefficient from the Dynamometer Test of the Aircraft

  • Woo, Gui-Aee;Jeon, Jeong-Woo;Lee, Ki-Chang;Kim, Yong-Joo
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.548-552
    • /
    • 2003
  • In the braking system, the friction force is the most important factor of the design. For long time, many researchers have been strived for getting the exact friction coefficients. But the friction coefficients are affected by the road condition and changed by lots of parameters, such as normal force and characteristics between two contacted materials, temperature, etc. For the development of ABS of the aircraft, HILS(Hardware-In-the-Loop-Simulation) test and dynamometer test was carried out. For the calculation of the friction coefficients, the wheel moments were measured using the load cell mounted on the housing of the wheel. The test conditions were dry and greasy, as the 0.7 and 0.4 in friction coefficient, respectively. In this paper, the test results of the friction coefficients were represented and the improvement method was suggested.

  • PDF

Sensor Redundancy Management using Kalman Filter for a Duplex Filght Control System (칼만필터를 이용한 2중 비행제어시스템의 센서 다중화 관리)

  • Lee, Seung-Hyun;Lee, Jang-Ho;Kim, Eung-Tae;Sung, Ki-Jung
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.18 no.4
    • /
    • pp.9-15
    • /
    • 2010
  • This paper presents a duplex flight control system of design concepts and sensor fault detection algorithm using Kalman Filter. The algorithm was verified to use HILS that is composed of two FCCs, motion table, visualization system, cockpit, and flight model computer. The FCC was developed to be able to mount on small aircraft.

FBW System and Operational Flight Program Development for Small Aircraft (소형항공기를 위한 FBW 시스템과 비행운영 프로그램 개발)

  • Lee, Seung-Hyun;Kim, Eung Tai;Seong, Kiejeong
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.21 no.1
    • /
    • pp.1-7
    • /
    • 2013
  • To have the competitiveness in the future worldwide small aircraft market, we should be able to develop the aircraft which is highly safe, easy to fly, and having excellent flight characteristics. FBW(Fly-By Wire) system is essential for the enhancement of flight safety and control easiness. FBW system that has been applied only to the modern fighter and transport aircraft is recently applied to smaller aircraft such as regional aircraft, business aircraft and even small aircraft. The purpose of this research includes the development of flight control computer, the definition of FBW system component, the design concept of each component for redundant management, OFP(Operational Flight Program) development, FBW system integration and HILS(Hardware In-the Loop Simulation) verification environment to test this FBW system.

Internet Teleopeation of an Embedded System using Streaming Buffer System (스트리밍 버퍼를 이용한 임베디드 시스템의 인터넷 원격제어)

  • 신완재;박장현
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.9
    • /
    • pp.56-62
    • /
    • 2004
  • Recently, necessity and usage of the teleoperation have been increased in various fields from industrial automation to home application. Also, the internet is considered as a strong candidate far the transmission media of signals. However, it has an irregular transmission time delay and causes critical problems such as instability and poor performance. This paper presents a practical internet teleoperation system with a streaming buffer system which makes a variable time delay fixed. Validity of the proposed system is demonstrated by implementing the embedded system on a HILS(hardware in the loop system) which models a two-wheel mobile robot.

Model Based Hardware In the Loop Simulation of Thermal Management System for Performance Analysis of Proton Exchange Membrane Fuel Cell (고분자전해질 연료전지 특성 해석을 위한 열관리 계통 모델 기반 HILS 기초 연구)

  • Yun, Jin-Won;Han, Jae-Young;Kim, Kyung-Taek;Yu, Sang-Seok
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.23 no.4
    • /
    • pp.323-329
    • /
    • 2012
  • A thermal management system of a proton exchange membrane fuel cell is taken charge of controlling the temperature of fuel cell stack by rejection of electrochemically reacted heat. Two major components of thermal management system are heat exchanger and pump which determines required amount of heat. Since the performance and durability of PEMFC system is sensitive to the operating temperature and temperature distribution inside the stack, it is necessary to control the thermal management system properly under guidance of operating strategy. The control study of the thermal management system is able to be boosted up with hardware in the loop simulation which directly connects the plant simulation with real hardware components. In this study, the plant simulation of fuel cell stack has been developed and the simulation model is connected with virtual data acquisition system. And HIL simulator has been developed to control the coolant supply system for the study of PEMFC thermal management system. The virtual data acquisition system and the HIL simulator are developed under LabVIEWTM Platform and the Simulation interface toolkit integrates the fuel cell plant simulator with the virtual DAQ display and HIL simulator.

A Fault Management Design of Dual-Redundant Flight Control Computer for Unmanned Aerial Vehicle (무인기용 이중화 비행조종컴퓨터의 고장관리 설계)

  • Oh, Taegeun;Yoon, Hyung-Sik
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.50 no.5
    • /
    • pp.349-357
    • /
    • 2022
  • Since the flight control computer of unmanned aerial vehicle (UAV) is a flight critical equipment, it is necessary to ensure reliability and safety from the development step, and a redundancy-based fault management design is required in order to operate normally even a failure occurs. To reduce cost, weight and power consumption, the dual-redundant flight control system design is considered in UAV. However, there are various restrictions on the fault management design. In this paper, we propose the fault detection and isolation designs for the dual-redundant flight control computer to satisfy the safety requirements of an UAV. In addition, the flight control computer developed by applying the fault management design performed functional tests in the integrated test environment, and after performing FMET in the HILS, its reliability was verified through flight tests.

Torque Ripple Reduction Method With Enhanced Efficiency of Multi-phase BLDC Motor Drive Systems Under Open Fault Conditions (다상 BLDC 모터 드라이브 시스템의 개방 고장 시 효율 향상이 고려된 토크 리플 저감 대책)

  • Kim, Tae-Yun;Suh, Yong-Sug;Park, Hyeon-Cheol
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.27 no.1
    • /
    • pp.33-39
    • /
    • 2022
  • A multi-phase brushless direct current (BLDC) motor is widely used in large-capacity electric propulsion systems such as submarines and electric ships. In particular, in the field of military submarines, the polyphaser motor must suppress torque ripple in various failure situations to reduce noise and ensure stable operation for a long time. In this paper, we propose a polyphaser current control method that can improve efficiency and reduce torque ripple by minimizing the increase in stator winding loss at maximum output torque by controlling the phase angle and amplitude of the steady-state current during open circuit failure of the stator winding. The proposed control method controls the magnitude and phase angle of the healthy phase current, excluding the faulty phase, to compensate for the torque ripple that occurs in the case of a phase open failure of the motor. The magnitude and phase angle of the controlled steady-state current are calculated for each phase so that copper loss increase is minimized. The proposed control method was verified using hardware-in-the-loop simulation (HILS) of a 12-phase BLDC motor. HILS verification confirmed that the increase in the loss of the stator winding and the magnitude of the torque ripple decreased compared with the open phase fault of the motor.

Development and Verification of Active Vibration Control System for Helicopter (소형민수헬기 능동진동제어시스템 개발)

  • Kim, Nam-Jo;Kwak, Dong-Il;Kang, Woo-Ram;Hwang, Yoo-Sang;Kim, Do-Hyung;Kim, Chan-Dong;Lee, Ki-Jin;So, Hee-Soup
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.50 no.3
    • /
    • pp.181-192
    • /
    • 2022
  • Active vibration control system(AVCS) for helicopter enables to control the vibration generated from the main rotor and has the superb vibration reduction performance with low weight compared passive vibration reduction device. In this paper, FxLMS algorithm-based vibration control software of the light civil helicopter tansmits the control command calculated using the signals of the tachometer and accelerometers to the circular force generator(CFG) is developed and verified. According to the RTCA DO-178C/DO-331, the vibration control software is developed through the model based design technique, and real-time operation performance is evaluated in PILS(processor in-the loop simulation) and HILS(hardware in-the loop simulation) environments. In particular, the reliability of the software is improved through the LDRA-based verification coverage in the PIL environments. In order to AVCS to light civil helicopter(LCH), the dynamic response characteristic model is obtained through the ground/flight tests. AVCS configuration which exhibits the optimal performance is determined using system optimization analysis and flight test and obtain STC certification.