• Title/Summary/Keyword: HILS(Hardware in the Loop Simulation)

Search Result 194, Processing Time 0.034 seconds

HILS(Hardware-In-the-Loop Simulation) Development of a Steering HILS System (전동식 동력 조향 장치 시험을 위한 HILS(Hardware-In-the-Loop Simulation) 시스템 개발)

  • 류제하;노기한;김종협;김희수
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.7 no.9
    • /
    • pp.105-111
    • /
    • 1999
  • The paper presents development of a Hardware-In-the-Loop simulation (HILS) system for the purpose of testing performance, stability, and reliability of an electronic power steering system(EPS). In order to realistically test an EPS by the proposed HILS apparatus, a simulated uniaxial dynamic rack force is applied physically to the EPS hardware by a pnumatic actuator. An EPS hardware is composed of steering wheel &column, a rack & pinion mechanism, andas motor-driven power steering system. A command signal for a pneumatic rack-force actuator is generated from the vehicle handling lumped parameter dynamic model 9software) that is simulated in real time by using a very fast digital signal processor. The inputs to the real-time vehicle dynamic simulation model are a constant vehicle forward speed and from wheel steering angles driven through a steering system by a driver. The output from a real-time simulation model is an electric signal that is proportional to the uniaxial rack force. The vehicle handling lumped parameter dynamic model is validated by a fully nonlinear constrained multibody vehicle dynamic model. The HILS system simulation results sow that the proposed HILS system may be used to realistically test the performance stability , and reliability of an electronic power steering system is a repeated way.

  • PDF

Development of Hardware-in-the-Loop Simulator for EHB Systems (EHB 시스템을 위한 Hardware-in-the-Loop 시뮬레이터 개발)

  • 허승진;박기홍;이해철;김태우;김형수
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.1139-1143
    • /
    • 2003
  • HILS(Hardware-In-the-Loop Simulation) is a scheme that incorporates hardware components of primary concern in the numerical simulation environment. Due to its advantages over actual vehicle test and pure simulation, HILS is being widely accepted in automotive industries as test benches for vehicle control units. Developed in this study is a HILS system for EHB(Electro-Hydraulic Brake) systems that include a high pressure generator and a valve control system that independently modulates the brake pressures at four wheels. An EHB control logic was tested in the HILS system. Test results under various driving conditions are presented and compared with the VDC logic.

  • PDF

Development of Hardware In-the-Loop Simulation System for Testing Power Management of DC Microgrids Based on Decentralized Control (분산제어 기반 직류 마이크로그리드 전력관리시스템의 HIL 시뮬레이션 적용 연구)

  • To, Dinh-Du;Le, Duc-Dung;Lee, Dong-Choon
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.24 no.3
    • /
    • pp.191-200
    • /
    • 2019
  • This study proposes a hardware-in-the-loop simulation (HILS) system based on National Instruments' PXI platform to test power management and operation strategies for DC microgrids (MGs). The HILS system is developed based on the controller HIL prototype, which involves testing the controller board in hardware with a real-time simulation model of the plant in a real-time digital simulator. The system provides an economical and effective testing function for research on MG systems. The decentralized power management strategy based on the DC bus signaling method for DC MGs has been developed and implemented on the HILS platform. HILS results are determined to be similar to those of the off-line simulation in PSIM software.

Islanded Microgrid Simulation using Hardware-in-the Loop Simulation (HILS) System based on OPAL-RT (OPAL-RT 기반의 Hardware-in-the-Loop Simulation (HILS) 시스템을 이용한 독립운전모드 마이크로그리드 시뮬레이션)

  • Yoo, Hyeong-Jun;Kim, Hak-Man
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.62 no.4
    • /
    • pp.566-572
    • /
    • 2013
  • A microgrid is a small scale power system. The microgrid is operated in two operation modes, the grid-connected mode and the islanded mode. In the islanded mode, the frequency of a microgrid should be maintained constantly. For this, the balance between power supply and power demand during islanded mode should be met. In general, energy storage systems (ESSs) are used to solve power imbalance. In this paper, the frequency control effect of a Lithium-ion battery energy storage system (Li-ion BESS) has been tested on the hardware-in-the loop simulation (HILS) system environment.

A Research on Effective Cyber-Physical Systems Tests Using EcoHILS (EcoHILS를 활용한 효율적인 CPS 시험에 관한 연구)

  • Kim, Min-Jo;Kang, Sungjoo;Chun, In-Geol;Kim, Won-Tae
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.9 no.4
    • /
    • pp.211-217
    • /
    • 2014
  • Cyber-Physical Systems(CPS) that mostly provides safety-critical and mission-critical services requires high reliability, so that system testing is an essential and important process. Hardware-In-the-Loop Simulation(HILS) is one of the extensively used techniques for testing hardware systems. However, most conventional HILS has problems that it is difficult to support a distributed operating environment and to reuse a HILS platform. In this paper, we introduce EcoHILS(ETRI CPS Open Human-Interactive hardware-in-the-Loop Simulator) in order to test CPS effectively. Moreover, feasibility tests and performance tests of EcoHILS are performed to confirm its effectiveness.

A Study on the Development of HILS System for Performance Test of Digital Governor (디지털 조속기의 성능 시험을 위한 HILS 시스템 개발에 관한 연구)

  • 장민규;조성훈;전일영;안병원;박영산;배철오;이성근;김윤식
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2003.05a
    • /
    • pp.317-319
    • /
    • 2003
  • HILS(Hardware In-the Loop Simulation) is commonly used in the development and testing of embedded systems, when those systems cannot be tested easily, thoroughly, and repeated in their operational environments. HILS can be a useful tool to develop products more quickly and cost effectively and also reduces the possibility of serious defects being discovered after production. During the product development period, Design optimization and hardware/software debugging can be performed using HILS skill. This paper describes a HILS model for the STG(Steam-Turbine Generator) Simulator to prove the performance of the developed Digital Governor. It is developed using software technics which can confirm the responses of a real-time system.

  • PDF

Implementation and Test of 3-level NPC VSC-HVDC System using Hardware-in-the-Loop Simulation (Hardware-in-the-Loop Simulation을 이용한 3-레벨 NPC 전압형 HVDC 시스템 구현 및 테스트)

  • Yoo, Hyeong-Jun;Kim, Nam-Dae;Kim, Hak-Man
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.63 no.3
    • /
    • pp.343-348
    • /
    • 2014
  • Recently, applications of VSC-HVDC systems to power systems are growing because of their control ability of reactive power. Meanwhile, the hardware-in-the-loop simulation (HILS) based on the real-time digital simulator has been applying to develop and test imbedded controllers and systems in the power industry to decrease costs and to save time. In this paper, a 3-level neutral point clamped (NPC) VSC-HVDC system is modeled and the embedded controllers of the NPC VSC-HVDC system are designed. The designed controllers are implemented by TMS320F28335. The TMS320F28335-based controllers of the NPC VSC-HVDC system are tested using the HILS.

Development of HILS System for VDC (VDC를 위한 HILS 시스템 개발에 관한 연구)

  • 박기홍;허승진
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.11 no.3
    • /
    • pp.184-191
    • /
    • 2003
  • HILS(Hardware-ln-the-Loop Simulation) is a scheme that incorporates hardware components of primary concern in the numerical simulation environment. Due to its advantages over actual vehicle test and pure simulation, HILS is being widely accepted in automotive industries as test benches for vehicle control units. Developed in this study is a HILS system for VDC(Vehicle Dynamics Control) with a valve control system that modulates the brake pressures at low wheels. Two VDC control logics were developed and tested in the HILS system. Test results under various driving conditions are presented in this paper.

A Design Method of the Simulation Program for HILS (HILS를 위한 시뮬레이션 프로그램 설계 기법)

  • Park, Haerhee;Jeon, In-Soo;Song, Chang-Joon
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.16 no.4
    • /
    • pp.435-440
    • /
    • 2013
  • In this paper, a design method of the simulation program for HILS(Hardware-In-the-Loop Simulation) system is proposed. The present method consists of definition of requirements for HILS, development of specifications, and implementation of the program to satisfy the specifications. In the implementation of the program, the application of hardware interface and the concept of structural modularization are proposed to satisfy the specifications. The concepts of CSCI(Computer Software Configuration Item) and encapsulation are used for structural modularization. The proposed method was practically applied to the development of the simulation program for the efficient operation in HILS of an anti-ship missile system.

A Development of Hardware-in-the Loop Simulation System For a Electric Power Steering System (전동식 동력 조향 장치 연구를 의한 HILS 시스템 개발)

  • Park, Dong-Jin;Yun, Seok-Chan;Han, Chang-Su
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.12
    • /
    • pp.2883-2890
    • /
    • 2000
  • In this study, a Hardware-In-The-Loop-Simulation(HILS) system for developing a Electric-Power-Steering(EPS) system is designed. To test a EPS by HILS system, a mathematical vehicle model with a steering system model has been constructed. This mathematical model has been constructed. This mathematical model has been downloaded to the Digital-Signal-Processor(DSP) board. To realize the lateral force acting on the front wheel in a real car. the steering wheel angle sensor and vehicle velocity have been used for input signal. The force sensor has been used for a feedback signal. The full vehicle states could by simulated by the HILS system. Consequently, the HILS system could by used to analyze control-parameters of a EPS that contributes to the maneuverability and stability of a vehicle. At the same time, the HILS system can evaluate the whole performance of the vehicle-steering system. Also the HILS system could do test could not be executed in real vehicle. The HILs system will useful for developing the control logic for the EPS system.