• Title/Summary/Keyword: HIC 머리상해치

Search Result 16, Processing Time 0.027 seconds

A Study on Prediction System For Pedestrian-Head Injury Criteria (보행자 머리 상해치 예측 시스템에 관한 연구)

  • Kim, Byung-Yoon;Huh, Yong-Jeong
    • Proceedings of the KAIS Fall Conference
    • /
    • 2006.05a
    • /
    • pp.109-111
    • /
    • 2006
  • 본 논문은 보행자 머리 상해치 예측을 통해 보행자 보호 법규의 만족여부를 판단하는 시스템을 구축 하는데 있다. 차량의 FE DATA와 더미 DATA를 입력하고, MADYMO solver를 이용하여 해석을 수행한다. 이를 통해 나온 결과 HIC(머리상해치)와 보행자 보호 법규에서 제시하는 HIC(머리상해치)와 비교를 통해 만족여부를 판단한다. 강화되는 보행자 보호 법규를 만족시키기 위해 차량시스템을 개선을 유도 하고 이를 통해 차량 대 보행자 사고 시 보행자의 생명을 구하는데 그 궁극적인 목적이 있다.

  • PDF

A Consideration on the Head Injury Criterion of KNCAP (KNCAP 머리상해기준값에 관한 고찰)

  • Lim, J.M.;Lee, K.W.
    • Journal of Auto-vehicle Safety Association
    • /
    • v.4 no.2
    • /
    • pp.22-26
    • /
    • 2012
  • Prasad and Mertz published head injury risk curves for skull fracture and for Abbreviated Injury Scale (AIS) ${\geq}4$ brain injury due to forehead impacts based on the 15 ms HIC criterion. KNCAP adopted the HIC36 criterion for the male dummy and the HIC15 criterion for the female dummy. In this paper, it was studied that which of the HIC15 and HIC36 was more effective for the male dummy head injury evaluation. The frontal US-NCAP data for the 7 vehicles from the NHTSA test database were used to evaluate the head injuries. In the case of using the HIC15 and evaluation range 250~700, the discrimination of the rating for the occupant head injury was increased.

A Study on the HIC15 Estimating Model Using Frontal Crash Pulses (정면충돌 가속도곡선을 이용한 HIC15 예측모델에 관한 고찰)

  • Ha, Tae-Woong;Lim, Jaemoon
    • Journal of Auto-vehicle Safety Association
    • /
    • v.14 no.1
    • /
    • pp.62-67
    • /
    • 2022
  • This study is to construct the simple estimating model for the HIC15 of the driver dummy using the frontal impact test results. Test results of 9 vehicles of Hyundai Sonata from the MY2002~MY2020 USNCAP are utilized for constructing the linear regression model. The average accelerations extracted from the vehicle crash pulses are handled as the main factors. The average accelerations of 10 ms interval within 0~100 ms are calculated from the crash pulse data of 9 vehicles. The present estimating model of the HIC15 using the average accelerations of 10 ms interval in the 0~80 ms range shows good agreement with the tested value within 2.4% maximum error.

A Development on the Prediction Model for the HIC15 using USNCAP Frontal Impact Test Results (USNCAP 정면충돌시험 결과를 이용한 HIC15 예측모델 개발)

  • Lim, Jaemoon
    • Journal of Auto-vehicle Safety Association
    • /
    • v.12 no.4
    • /
    • pp.31-38
    • /
    • 2020
  • This study is to develop the prediction model for the HIC15 in frontal vehicle crash tests. The 28 frontal impact test results of the MY2019 and MY2020 USNCAP are utilized. The metrics for evaluating the crash pulse severity such as moving average acceleration, Restraint Quotient (RQ) and ride-down efficiency are reviewed to find out whether the metrics can predict the HIC15. It is observed that the R2 values based on the linear regression of all pairs between the existing metrics and the occupant injuries such as the HIC15, 3 ms chest g's and chest deflection are very low. In this study, using the vehicle crash pulses, the linear regression model for estimating the HIC15 is developed. The vehicle crash pulse is splitted seven 10 ms intervals in 70 ms after impact for extracting the average accelerations in each intervals. The prediction model can predict effectively not only the HIC15 but also the maximum head g's, chest deflection and 3 ms chest g's of 13 vehicles out of 28 vehicles.

Child Occupant Safety According to the ISOFIX Type of CRS (CRS의 부착방식에 따른 어린이 탑승자 안전도 비교)

  • 이재완;윤영한;박경진
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.11 no.4
    • /
    • pp.86-93
    • /
    • 2003
  • These days, automobile industry pays considerable attention to child occupant safety. As the US adopted requirements for universal and uniform anchor systems for child restraints, manufacturers for child seats put an enormous effort to improve the protective properties of Child Restraint System (CRS). Various standards have been studied and announced by different countries. The anchorage system is the most important in the CRS and the rules of universal anchor are to provide devices which are independent of safety belts. A new concept called International Standard Organization Fixture (ISOFIX) has been announced. It suggests some designs for the CRS. In this study, the suggested designs are evaluated with domestic products. Tests are performed and the results are incorporated into a finite element modeling process. As the finite element model is established, various numerical tests are conducted and the numerical results are discussed. A commercial software system is utilized for the nonlinear finite element analysis.

Experiments of CRS for Safety Improvement (어린이보호용좌석 효과의 실험적 연구)

  • 이재완;박형원;윤경한;박경진
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.11 no.4
    • /
    • pp.79-85
    • /
    • 2003
  • The child restraint system is blown to be excellent to reduce child occupant injury in frontal collisions. The effects of the child restraint system are experimently investigated according to FMVSS 213. A sled simulator is utilized with varying restraint types such as 2point, 3point seat belts, forward-facing types and booster types of child restraint systems. The head and chest injuries for various cases are evaluated based on industrial standards. Also, the maximum displacements of the head and the knees are measured by film analysis. Using the results of the test, the effects of the child restraint system is discussed and reduction of child occupant injury is pursued.

Design Recommendations of the Occupant Protection Systems Using Orthogonal Arrays (직교배열표를 이용한 승객보호장구의 설계)

  • 임재문;박경진
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.7 no.8
    • /
    • pp.208-215
    • /
    • 1999
  • Using the orthogonal arrays and the occupant analysis software based on the multi-body dynamics , two interactive design algorithms are proposed to improve the initial design of the occupant protection systems. Algorithm 1 sequentially moves the narrow design space within the upper and the lower design limit. Algorithm 2 sequentially reduces the relatively wide design space. Each design algorithm is composed of two levels . The first level is to improve the characteristics of the crash performance considering the noise factors. In order to obtain the robust design, the second level reduces the variations the noise factors. In order to obtain the robust design, the second level reduces the variations due to the tolerance of the design variable. To utilize the algorithm 1, HIC(Head Injury Criterion) , 3 msec criterion value of the chest acceleration and the femur load decreased by 27.4%, 10.4% and 55.8%, respectively. To utilizer the algorithm 2 , the results decreased by 38.0%, 10.5% and 3.0% , respectively.

  • PDF

Development of a finite Element Model for Studying the Occupant Behavior and Injury Coefficients of a Large-sized Truck (대형트럭 승객거동과 상해치 해석을 위한 유한요소모델의 개발)

  • O, Jae-Yun;Kim, Hak-Deok;Song, Ju-Hyeon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.8
    • /
    • pp.1577-1584
    • /
    • 2002
  • This paper develops a finite element model for studying the occupant behavior and injury cofficients of a large-sized cab-over type truck. Since it does not have a room to absorb collision energy and deformation in front of the passenger compartment the deformation is directly transmitted to the passenger compartment. Moreover, since its steering column is attached on the frame, severe deformation of the frame directly affects on the steering wheel's movement. Therefore, if the occupant behavior and injury coefficients analysis is performed using a finite element model developed based on a sled test, it is very difficult to expect acquiring satisfactory results. Thus, the finite element model developing in this paper is based on the frontal crash test in order to overcome the inherent problems of the sled test based model commonly used in the passenger car. The occupant behavior and injury coefficients analysis is performed using PAM-CRASH installed in super-computer SP2. In order to validate the reliability of the developed finite element model, a frontal crash test is carried out according to a test method used fur developing truck occupant's secondary safety system in european community and japan. That is, test vehicle's collision direction is vertical to the rigid barrier and collision velocity is 45kph. Thus, measured vehicle pulses at the lower parts of the left and right B-pilla., dummy chest and head deceleration profiles, HIC(head injury criterial) and CA(chest acceleration) values, and dummy behavior from the frontal crash test are compared to the analysis results to validate reliability of the developed model.

A New Airbag Modeling Using a Sphere and a Torus and the Occupant Analysis in the Out-of-position (구와 원환체를 이용한 에어백의 모델링 및 비정상위치시의 승객 거동 해석)

  • 임재문;김창환;박경진
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.4 no.1
    • /
    • pp.96-109
    • /
    • 1996
  • The airbag system is known to be extremely efficient for the protection in an automobile crash. The performance of the airbag system is evaluated by real tests. However, the test is very difficult and expensive. Therefore, the computational simulations are carried out with low cost. The airbag analysis is included in the anlysis of the full-car crashworthiness. The behavior of the airbag can be predicted by a thermodynamic analysis. The contact force between the occupant and the airbag is calculated from the contact volume and the pressure in the airbag. The injury rate is evaluated from the contact force and the acceleration of dummies. So far, the contact is defined after the airgag is fully inflated. In many cases, the occupant is seated in the out-of-position and the contact can happen during the inflation process. A new algorithm has been developed for the out-of-position. To describe the inflation process precisely, the airbag is defined by a sphere and a torus. The injury is evaluated for the contact happened at any time. The developed algorithm is coded and interfaced with an existing software in the public domain. The full-car modeling is adopted from the previous study which is tuned for the regular position and real tests. Numerical experimentation have been carried out with a couple of dummies in the out-of-position and the injury processes are analyzed.

  • PDF

A Consideration on the Results of Side Impact and Pole Side Impact Tests in 2011 KNCAP (2011 KNCAP 측면충돌 및 기둥측면충돌 시험결과 고찰)

  • Lee, Dongjun;Choi, Youngtae;Lee, Kwangwon;Lim, Jaemoon
    • Journal of Auto-vehicle Safety Association
    • /
    • v.3 no.2
    • /
    • pp.22-27
    • /
    • 2011
  • The side impact test in the Korean New Car Assessment program (KNCAP) has been conducted since 2003. The side impact test method has been contributed to the improvement of the vehicle side structure and the enhancement of the occupant protection performance for the domestic vehicles. The pole side impact test method introduced in the KNCAP in 2010 to enhance the head protection under the severe side crash environment. The pole side impact test is optional for the additional score to be added to the overall rating score. The test results of side and pole side impact test for five vehicles were introduced and compared.