• Title/Summary/Keyword: HGMS

Search Result 48, Processing Time 0.023 seconds

The Recycling of Sludge from Granite Stone Cutting and Polishing (화강암 석재 가공 슬러지의 재활용)

  • 이성오;국남표;임영빈;신방섭
    • Resources Recycling
    • /
    • v.4 no.1
    • /
    • pp.12-19
    • /
    • 1995
  • This study was carried out to remove the iron and impurities usmg hydrocyclone and HGMS for recycling of sludge from the granite stone cutting and polishing industrγ in the basic of chemi떠1 analysis and minerallogical investigation. This sludge consist of 70.9% $SiO_2$ 13.6% $Al_2O_3$ and It also contained 2.52% of $Fe_2O_7$ and 0.29% of $TiO_2$, as a main impurities to decrease the whiteness. As the result of hydrocyclone experiment, It was very good condition that are 100~150 g/l of sludge amount, 2.0~ 2.5 mm of underflow nozzle size, and 1.2~1.6 kg/$\textrm{cm}^2$ of pressure for 85% sludge product with the $-37{\mu}\textrm{m}$ size. $Fe_2O_3$ and $TiO_2$, contents by treatment of HGMS were decreased with 0.65% and 0.07% each at 10,000 gauss of magnetic field strength, and addih$\upsilon$n of Sodium tripolyphosphate as a dispersant was effected to get low grade F Fe,Ol and TiO, concentrate. PhYSIcal properties of this stone sludge product were showed 58.5% of whiteness, 1 13.4% of firing shrinkage and 3.0812 $\textrm{m}^2$/g of specific surface area.

  • PDF

Formation of iron oxides from acid mine drainage and magnetic separation of the heavy metals adsorbed iron oxides

  • Kwon, Hee-won;Kim, JeongJin;Ha, Dong-Woo;Kim, Young-Hun
    • Progress in Superconductivity and Cryogenics
    • /
    • v.18 no.1
    • /
    • pp.28-32
    • /
    • 2016
  • There are a few thousand abandoned metal mines in South Korea. The abandoned mines cause several environmental problems including releasing acid mine drainage (AMD), which contain a very high acidity and heavy metal ions such as Fe, Cu, Cd, Pb, and As. Iron oxides can be formed from the AMD by increasing the solution pH and inducing precipitation. Current study focused on the formation of iron oxide in an AMD and used the oxide for adsorption of heavy metals. The heavy metal adsorbed iron oxide was separated with a superconducting magnet. The duration of iron oxide formation affected on the type of mineral and the degree of magnetization. The removal rate of heavy metal by the adsorption process with the formed iron oxide was highly dependent on the type of iron oxide and the solution pH. A high gradient magnetic separation (HGMS) system successfully separated the iron oxide and harmful heavy metals.

Removal of iron oxide scale from boiler feed-water in thermal power plant by high gradient magnetic separation: field experiment

  • Akiyama, Yoko;Li, Suqin;Akiyama, Koshiro;Mori, Tatsuya;Okada, Hidehiko;Hirota, Noriyuki;Yamaji, Tsuyoshi;Matsuura, Hideki;Namba, Seitoku;Sekine, Tomokazu;Mishima, Fumihito;Nishijima, Shigehiro
    • Progress in Superconductivity and Cryogenics
    • /
    • v.23 no.3
    • /
    • pp.14-19
    • /
    • 2021
  • The reduction of carbon dioxide emissions becomes a global issue, the main source of carbon dioxide emissions in the Asian region is the energy conversion sector, especially coal-fired power plants. We are working to develop technologies that will at least limit the increase in carbon dioxide emissions from the thermal power plants as one way to reduce carbon dioxide emissions. Our research aims to reduce carbon dioxide emissions by removing iron oxide scale from the feedwater system of thermal power plants using a superconducting high-gradient magnetic separation (HGMS) system, thereby reducing the loss of power generation efficiency. In this paper, the background of thermal power plants in Asia is outlined, followed by a case study of the introduction of a chemical cleaning line at an actual thermal power plant in Japan, and the possibility of introducing it into the thermal power plants in China based on the results.

The review of international forum on magnetic force control IFMFC activity from 2010

  • Watanabe, Tsuneo
    • Progress in Superconductivity and Cryogenics
    • /
    • v.24 no.3
    • /
    • pp.1-6
    • /
    • 2022
  • The Magnetic Force Control MFC technology is very useful because of its physical treatment process. Especially the Magnetic Separation MS technology is expected to contribute to SDGs 2030, Circular Economy and Carbon neutral 2050 realization. This paper describes the review of the IFMFC activity from 2010.The IFMFC is organized by three local committees of researchers in Japan, China and Korea. The IFMFC aims to exchange the information of the development results using the MFC technology and to educate the young researchers. The forum has been held in every year around three countries. In 2020 and 2021, the forum was organized by Zoom online due to the COVID-19. The 134 presentations were made up to 2020.The breakdown of these presentations are categorized to the environment remediation52%, material resource37% and fundamental research/technology11%. The Super Conducting Magnet SCM development promotes the MFC technologies. There are some impressive backgrounds as to the brilliant SM technology applications for many different magnetism ; SCM development, High Gradient Magnetic Separation HGMS, magnetic seeding method and magneto-Archimedes effect. This paper reviews the IFMFC activity according to those presented presentations.

Study on multi-stage magnetic separation device for paramagnetic materials operated in low magnetic fields

  • F. Mishima;Aoi Nagahama;N. Nomura;S. Nishijima
    • Progress in Superconductivity and Cryogenics
    • /
    • v.25 no.3
    • /
    • pp.13-17
    • /
    • 2023
  • Magnetic separation technology for small paramagnetic particles has been desired for the volume reduction of contaminated soil from the Fukushima nuclear power plant accident and for the separation of scale and crud from nuclear power plants. However, the magnetic separation for paramagnetic particles requires a superconducting high gradient magnetic separation system applied, hence expanding the bore diameter of the magnets is necessary for mass processing and the initial and running costs would be enormous. The use of high magnetic fields makes safe onsite operation difficult, and there is an industrial need to increase the magnetic separation efficiency for paramagnetic particles in as low a magnetic field as possible. Therefore, we have been developing a magnetic separation system combined with a selection tube, which can separate small paramagnetic particles in a low magnetic field. In the previous technique we developed, a certain range of particle size was classified, and the classified particles were captured by magnetic separation. In this new approach, the fluid control method has been improved in order to the selectively classify particles of various diameters by using a multi-stage selection tube. The soil classification using a multi-stage selection tube was studied by calculation and experiment, and good results were obtained. In this paper, we report the effectiveness of the multi-stage selection tube was examined.

Application and Type of Magnetic Separator (자력선별장비의 유형과 활용)

  • Lee, Sang-hun;Yang, Injae;Choi, Seungjin;Park, Jayhyun
    • Resources Recycling
    • /
    • v.27 no.6
    • /
    • pp.11-22
    • /
    • 2018
  • Magnetic separators has been used in the mining and the recycling fields in general, and is still applied in wide variety of fields. It is classified into the equipments for separating coarse ferrous scrap from non-ferrous materials and the equipments for concentrating fine ferromagnetic particles below 3mm. Magnetic separation equipments for concentrating fine materials also falls into two categories of low intensity and high intensity magnetic separators. The former is used for ferromagnetic materials but also paramagnetic materials of high magnetic susceptibility, and the latter for paramagnetic materials of lower magnetic susceptibility. Both low and high intensity magnetic separators could be utilized either dry and wet. Recently, the High gradient magnetic separators(HGMS) used in the range of less than 0.7 tesla has been gradually replaced by the magnetic separator made of rare earth permanent magnets commercialized in the 1980s. In addition, the expansion of nanotechnology in terms of synthetic magnetic materials in the environmental and biological fields is expected to contribute positively to the development of magnetic separation technology.

Evaluation of contamination for the Andong-dam sediment and a magnetic separation for reducing the contamination level

  • Hong, H.P.;Kwon, H.W.;Kim, J.J.;Ha, D.W.;Kim, Young-Hun
    • Progress in Superconductivity and Cryogenics
    • /
    • v.21 no.2
    • /
    • pp.31-35
    • /
    • 2019
  • Andong-dam was built up in 1967 and it is one of the biggest dams in Korea. Previous studies showed that the sediments are highly contaminated with heavy metals such as arsenic, cadmium, and lead. Many research projects are going on to find out the source of the contamination, to evaluate the toxicities to ecosystem, to estimate the volume of sediment to be treated and to find out a good remediation method. Reports show that the sediment is highly contaminated and the main contamination source is supposed to be abandoned mines and a zinc refinery located upper stream of the river. A magnetic separation has been tested as a treatment method for the dredged sediment. Lab scale test showed that the magnetically captured portion is about 10% in weight but the contamination of heavy metal is much higher than the contamination of the passed portion. This indicates that a magnetic separation could be applied for the purpose of reduction of sediment to be treated and for increasing the volume of low toxic sediments which can be dumped as general waste. A magnetic separation using a HGMS has been tested for the sediment with variable magnetic field and the results showed the higher magnetic field increase the captured portion but the concentrating effect of heavy metal was weakened. Further study is needed to establish a useful technology and optimization between decontamination and reduction of sediment volume.

An analysis of trends in wetland function assessments and further suggestions (습지 기능 평가의 동향 분석 및 제언)

  • Hong, Mun Gi;Kim, Jae Geun
    • Journal of Wetlands Research
    • /
    • v.19 no.1
    • /
    • pp.1-15
    • /
    • 2017
  • Wetland function assessment is not only a basic step to understand wetland ecosystems in detail but also an important process as a base of the term, ecosystem service to recognize wetland ecosystems as valuable and useful resources and goods for human being. WET (wetland evaluation technique), EMAP (environmental monitoring assessment program)-wetlands, and HGM (hydrogeomorphic method) were developed as pioneer wetland function assessments in U.S. at the end of $20^{th}$-century. RAMs (rapid assessment methods) became a major function assessment tool which is relatively simpler and easier assessment tool at the beginning of $21^{th}$-century. After that, the hierarchy of three levels of assessment (landscape assessment, rapid assessment, and intensive assesment) has been prepared and strategically utilized according to the objectives and purposes of function assessments. In South Korea, RAM and HGM were used to assess wetland functions with reforming a couple of items and contents at 2001. And, modified and reformed function assessments have been developed to complement and improve upon the existing RAMs and HGMs. Via the trend analysis on wetland function assessments, some needs which require supplements in terms of function assessment are pointed out: 1) wetland function assessments using useful indicators such as birds are needed with considering our environmental characteristics. 2) optimized wetland function assessments for coastal wetlands are also needed. 3) the network construction and further expansion to lead communications and co-operations between researchers and policy makers is needed in the field of wetland function assessment.