• 제목/요약/키워드: HEU

검색결과 514건 처리시간 0.029초

HANARO Fission Moly Target으로서의 LEU와 HEU의 특성 비교

  • 조동건;김명현
    • 한국원자력학회:학술대회논문집
    • /
    • 한국원자력학회 1997년도 춘계학술발표회논문집(1)
    • /
    • pp.108-113
    • /
    • 1997
  • 하나로(HANARO)를 이용하여 핵분열 방법으로 진단용 방사선원인 $^{99m}$ Tc의 모핵종인 Mo-99를 생산할 경우, HEU 및 LEU UO2 표적이 사용될 수 있다. 표적연료로서 HEU(93w/o $^{235}$ U)가 LEU(19.75w/o $^{235}$ U)에 비해 생성수율(Ci/gU)이 높게 나타났으며 제품의 질(quality)을 좌우하는 비방사능(Ci$^{99}$Mo/gMo)은 같게 나타났다. HEU가 같은 Mo-99의 방사능량을 얻기 위해서는 우라늄 장전량이 적어지므로 폐기물측면과 용해측면에서 이득이나 농축도를 고려하면, 큰 이득이 발생하지 않으므로 하나로에 LEU를 사용하는 것도 타당하다 할 수 있다.

  • PDF

Prompt neutron lifetime calculations for the NIRR-1 reactor

  • Ibrahim, Yakubu V.;Adeleye, Micheal O.;Njinga, Raymond L.;Odoi, Henry C.;Jonah, Sunday A.
    • Advances in Energy Research
    • /
    • 제3권2호
    • /
    • pp.125-131
    • /
    • 2015
  • Prompt neutron lifetime calculations have been performed for the NIRR-1 reactor HEU and LEU cores using the 1/v insertion and the Adjoint flux weighing methods. Results of calculations obtained for the HEU and LEU cores are respectively $57.3{\pm}0.8$ and $47.5{\pm}0.7$ for the 1/v insertion and $56.9{\pm}0.3$ and $46.3{\pm}0.5$ for the Adjoint flux. There is a good agreement seen between the two methods for both cores. The prompt neutron lifetime was observed to be shorter in the LEU than for the HEU as expected. However, the Adjoint flux weighing method seemed to be the easiest method in calculating the prompt neutron lifetime for NIRR-1.

Sensitive and Pathovar-Specific Detection of Xanthormonas campestris pv. glycines by DNA Hybridization and Polymerase Chain Reaction Analysis

  • Changsik Oh;Sunggi Heu;Park, Yong-Chul
    • The Plant Pathology Journal
    • /
    • 제15권1호
    • /
    • pp.57-61
    • /
    • 1999
  • Xanthomonas campestris pv. glycines causes bacterial pustule disease on susceptible soybean leaves and produces a bacteriocin, named glycinecinA, against most xanthomonads including Xanthomonas campestris pv. vesicatoria. One of the 5 isolated DNA regions responsible for bacteriocin production, a 1.7 kb DNA region for the glycinecinA gene, was used as a probe to detect the presence of the homolog DNA in other bacterial strains. Among 55 bacterial strains tested, only X. campestris pv. glycines showed the positive signal with glycinecinA DNA. Two oligomers, heu2 and heu4, derived from a glycinecinA DNA were used to carry out the polymerase chain reaction (PCR) analysis with chromosomal DNA from 55 different bacterial strains including 24 different strains of X. campestris pv. glycines, 9 different pathovars of xanthomonads, and other 22 bacterial strains of different genus and species. By separation of the PCR products on agarose gel, a 0.86 kb DNA fragment was specifically detected when X. campestris pv. glycines was present in the amplification assay. The 0.86 kb fragment was not amplified when DNA from other bacteria was used for the assay. Southern analysis with glycinecinA DNA showed that the PCR signal was obtained with X. campestris pv. glycines isolates from various geographic regions and soybean cultivars. Therefore, the 1.7 kb DNA region for the glycinecinA gene can be used for the pathovar-specific probe for the DNA hybridization and the primers heu2 and heu4 can be used for the pathovar-specific primers for the PCR analysis to detect X. campestris pv. glycines.

  • PDF

An Efficient Method for N-Formylation of Amines Using Natural HEU Zeolite at Room Temperature Under Solvent-Free Conditions

  • Bahari, Siavash;Mohammadi-Aghdam, Babak;Mohammad Sajadi, S.;Zeidali, Fereshteh
    • Bulletin of the Korean Chemical Society
    • /
    • 제33권7호
    • /
    • pp.2251-2254
    • /
    • 2012
  • A rapid and practical green route for N-formylation of primary and secondary amines with formic acid at room temperature under the solvent-free conditions using HEU zeolite as a heterogeneous, reusable and highly efficient catalyst is described. The process is remarkably simple and environmentally benign. Excellent chemoselectivity was observed for the conversion of primary amines in the presence of secondary amines.

An investigative study of enrichment reduction impact on the neutron flux in the in-core flux-trap facility of MTR research reactors

  • Xoubi, Ned;Darda, Sharif Abu;Soliman, Abdelfattah Y.;Abulfaraj, Tareq
    • Nuclear Engineering and Technology
    • /
    • 제52권3호
    • /
    • pp.469-476
    • /
    • 2020
  • Research reactors in-core experimental facilities are designed to provide the highest steady state flux for user's irradiation requirements. However, fuel conversion from highly enriched uranium (HEU) to low enriched uranium (LEU) driven by the ongoing effort to diminish proliferation risk, will impact reactor physics parameters. Preserving the reactor capability to produce the needed flux to perform its intended research functions, determines the conversion feasibility. This study investigates the neutron flux in the central experimental facility of two material test reactors (MTR), the IAEA generic10 MW benchmark reactor and the 22 MW s Egyptian Test and Research Reactor (ETRR-2). A 3D full core model with three uranium enrichment of 93%, 45%, and 20% was constructed utilizing the OpenMC particle transport Monte Carlo code. Neutronics calculations were performed for fresh fuel, the beginning of life cycle (BOL) and end of life cycle (EOL) for each of the three enrichments for both the IAEA 10 MW generic reactor and core 1/98 of the ETRR-2 reactor. Criticality calculations of the effective multiplication factor (Keff) were executed for each of the twelve cases; results show a reasonable agreement with published benchmark values for both reactors. The thermal, epithermal and fast neutron fluxes were tallied across the core, utilizing the mesh tally capability of the code and are presented here. The axial flux in the central experimental facility was tallied at 1 cm intervals, for each of the cases; results for IAEA 10 MW show a maximum reduction of 14.32% in the thermal flux of LEU to that of the HEU, at EOL. The reduction of the thermal flux for fresh fuel was between 5.81% and 9.62%, with an average drop of 8.1%. At the BOL the thermal flux showed a larger reduction range of 6.92%-13.58% with an average drop of 10.73%. Furthermore, the fission reaction rate was calculated, results showed an increase in the peak fission rate of the LEU case compared to the HEU case. Results for the ETRR-2 reactor show an average increase of 62.31% in the thermal flux of LEU to that of the HEU due to the effect of spectrum hardening. The fission rate density increased with enrichment, resulting in 34% maximum increase in the HEU case compared to the LEU case at the assemblies surrounding the flux trap.