• Title/Summary/Keyword: HERV

Search Result 60, Processing Time 0.279 seconds

Mechanism of Human Endogenous Retrovirus (HERV) in Inflammatory Response (인간 내생 레트로바이러스(Human Endogenous Retrovirus, HERV)의 염증반응 조절 기작)

  • Ko, Eun-Ji;Cha, Hee-Jae
    • Journal of Life Science
    • /
    • v.31 no.8
    • /
    • pp.771-777
    • /
    • 2021
  • Human endogenous retroviruses (HERVs) were inserted into the human genome millions of years ago but they are currently inactive and non-infectious due to recombinations, deletions, and mutations after insertion into the host genome. Nonetheless, recent studies have shown that HERV-derived elements are actually involved in physiological phenomena and certain diseases including cancers. Among the various physiological phenomena related to HERV-derived elements, it is necessary to focus on inflammatory response. HERV-derived elements have been reported to be directly involved in various inflammatory diseases, including autoimmune diseases such as rheumatoid arthritis, multiple sclerosis, amyotrophic lateral sclerosis, and Sjogren's syndrome. As a mechanism for regulating inflammation through HERV-derived elements, the possibility that HERV-derived elements may cause nonspecific innate immune processes and that HERV-derived RNA or proteins may cause selective signaling mechanisms through specific receptors can be considered. However, the mechanism through which HERV-derived elements regulate inflammatory response, such as how silent HERV elements are activated in inflammatory response and what factors and signaling mechanisms are involved in HERV-derived elements, have not been identified to date, making it difficult to study the onset of HERV-related inflammatory disease. In this review, we introduce HERV-related autoimmune diseases and propose the mechanisms of HERV-derived elements at the molecular level of HERV in inflammatory response.

Expression profiles of human endogenous retrovirus (HERV)-K and HERV-R Env proteins in various cancers

  • Ko, Eun-Ji;Song, Kyoung Seob;Ock, Mee Sun;Choi, Yung Hyun;Kim, Suhkmann;Kim, Heui-Soo;Cha, Hee-Jae
    • BMB Reports
    • /
    • v.54 no.7
    • /
    • pp.368-373
    • /
    • 2021
  • The vertebrate genome contains an endogenous retrovirus that has been inherited from the past millions of years. Although approximately 8% of human chromosomal DNA consists of sequences derived from human endogenous retrovirus (HERV) fragments, most of the HERVs are currently inactive and noninfectious due to recombination, deletions, and mutations after insertion into the host genome. Several studies suggested that Human endogenous retroviruses (HERVs) factors are significantly related to certain cancers. However, only limited studies have been conducted to analyze the expression of HERV derived elements at protein levels in certain cancers. Herein, we analyzed the expression profiles of HERV-K envelope (Env) and HERV-R Env proteins in eleven different kinds of cancer tissues. Furthermore, the expression patterns of both protein and correlation with various clinical data in each tissue were analyzed. The expressions of both HERV-K Env and HERV-R Env protein were identified to be significantly high in most of the tumors compared with normal surrounding tissues. Correlations between HERV Env expressions and clinical investigations varied depending on the HERV types and cancers. Overall expression patterns of HERV-K Env and HERV-R Env proteins were different in every individual but a similar pattern of expressions was observed in the same individual. These results demonstrate the expression profiles of HERV-K and HERV-R Env proteins in various cancer tissues and provide a good reference for the association of endogenous retroviral Env proteins in the progression of various cancers. Furthermore, the results elucidate the relationship between HERV-Env expression and the clinical significance of certain cancers.

Identification and Phylogeny of Long Terminal Repeat Elements of Human Endogenous Retrovirus HERV-S (인간 내생 레토르바이러스 HERV-S의 LTR엘리먼트의 동정과 계통분류)

  • 최주영;이주민;전승희;신경미;이지원;이원호;김희수
    • Journal of Life Science
    • /
    • v.11 no.5
    • /
    • pp.400-404
    • /
    • 2001
  • A new human endogenous retroviral family (HERV-S) has recently been identified from human X chromosome. It is 6.7 kb in length and has a typical retroviral structure with LTR-gag-pol-env-LTR. Using the PCR and sequencing approach, we investigated LTR elements of the HERV-S family from a human genomic DNA. Four LTR elements (HSL-1, HSL-5, HSL-10, HSL-11) were identified and have a high degree of sequence similarity(96-99%) with that of the HERV-S. Phylogenetic analysis from the HERV-S family indicated that the LTR elements were mainly divided into 2- groups through evolutionary divergence in the primate evolution. Further investigation of the HERV-S LTR elements in primates may cast light on the integration timing into the primate genome and understanding of human evolution.

  • PDF

Identification and Phylogeny of the Human Endogenous Retrovirus HERV-W LTR Family in Cancer Cells

  • Yi, Joo-Mi;Kim, Hwan-Mook;Kim, Heui-Soo
    • Animal cells and systems
    • /
    • v.6 no.2
    • /
    • pp.167-170
    • /
    • 2002
  • The long terminal repeats (LTRs) of human endogenous retrovirus (HERV) have been found to be coexpressed with sequences of closely located genes. It has been suggested that the LTR elements have contributed to the structural change or genetic variation of human genome connected to various diseases and evolution. We examined the HERV-W LTR elements in various cancer cells (2F7, A43l , A549, HepG2, MIA-PaCa-2, PC-3, RT4, SiHa, U-937, and UO-31). Using genomic DNA from the cancer cells, we performed PCR amplification and identified twelve new HERV-W LTR elements. Those LTR elements showed a high degree of sequence similarity (88-99%) with HERV-W LTR (AF072500). A phylogenetic tree obtained by the neighbor-joining method revealed that HERV-W LTR elements could be mainly divided into two groups through evolutionary divergence. Three HERV-W LTR elements (RT4-2, A43l-1, and UO3l-2) belonged to Group 1, whereas nine LTR elements (2F7-2, A549-1, A549-3, HepG2-3, MP2-2, PC3-1, SiHa-8, SiHa-10, and U937-1) belonged to Group 11. Taken together, our new sequence data of the HERV-W LTR elements may contribute to an understanding of tissue-specific cancer by genomic instability of LTR integration.

Identification and Phylogenetic Analysis of Long Terminal Repeat Elements of the Human Endogenous Retrovirus K Family (HERV-K) from a Human Brain cDNA Library

  • Kim, Heui-Soo;Lee, Young-Choon
    • Animal cells and systems
    • /
    • v.5 no.2
    • /
    • pp.133-137
    • /
    • 2001
  • Long terminal repeats (LTRs) of the human endogenous retrovirus K family (HERV-K) have been found to be coexpressed with sequences of genes closely located nearby. We examined transcribed HERV-K LTR elements in human brain tissue. Using cDNA synthesized from mRNA of the human brain, we performed PCR amplification and identified ten HERV-K LTR elements. These LTR elements showed a high degree of sequence similarity (92.4-99.7%) with the human-specific LTR elements. A phylogenetic tree obtained by the neighbor-joining method revealed that HERV-K LTR elements could be divided into two groups through evolutionary divergence. Some HERV-K LTR elements (HKL-B7, HKL-B8, HKL-B10) belonging to the group II from human brain cDNA were closely related to the human-specific HERV-K LTR elements. Our data suggest that HERV-K LTR element are active in the human brain; they could conceivably play a pathogenic role in human diseases such as psychosis.

  • PDF

Phylogenetic Analysis of HERV-K LTR Family in Human Chromosome Xq26 and New World Monkeys

  • Kim, Heui-Soo;Park, Joo-Young;Lee, Won-Ho;Jang, Kyung-Lib;Park, Won-Hyuck;Moon, Doo-Ho;Osamu Takenaka;Hyun, Byung-Hwa
    • Journal of Life Science
    • /
    • v.10 no.1
    • /
    • pp.32-36
    • /
    • 2000
  • Solitary long terminal repeats(LTRs) of human endogenous retrovirus K family(HERV-K) have been found to be coexpressed with sequences of closely located genes. It has been suggested that HERV-K LTR-like elements entered the primate genome approximately 33-40 million years ago. WE investigated the presence of HERV-K LTR elements in New World monkeys using PCR amplification. Six LTR elements of HERV-K family were identified from New World monkeys, represented by the squirrel and night monkeys. They showed a high degree of sequence homology(96-99%) with the human-specific HERV-K LTR elements. Phylogenetic analysis reveals that an LTR element (SM-1) from the squirrel monkey and another LTR element (NM-1) from the night monkey are very closely related to the human-specific HERV-K LTR elements with low degree of divergence. This finding suggests that some of LTR elements of HERV-K family have recently been proliferated in New World monkeys. A sequence in chromosome Xq26(AL034407) \ulcorner contains an HERV-K LTR element was shown to be present in the human genome, but is absent in the bonobo, chimpanzee, gorilla, orangutan, and gibbon. It has more than 99% homology to other human-specific HERV-K LTR elements. This sequence thus represents and isolated insertion of an evolving class of elements that may have made a particular contribution to human genomic plasticity.

Expression of HERV-HX2 in Cancer Cells and Human Embryonic Stem Cells

  • Jung, Hyun-Min;Choi, Seoung-Jun;Kim, Se-Hee;Moon, Sung-Hwan;Yoo, Jung-Ki;Chung, Hyung-Min;Kim, Jin-Kyeoung
    • Reproductive and Developmental Biology
    • /
    • v.32 no.2
    • /
    • pp.105-110
    • /
    • 2008
  • The endogenous retrovirus-like elements (HERVs) found on several human chromosomes are somehow involved in gene regulation, especially during the transcription level. HERV-H, located on chromosome Xp22, may regulate gastrin-releasing peptide receptor (GRPR) in connection with diverse diseases. By suppression subtractive hybridization screen on SV40-immortalized lung fibroblast (WI-38 VA-13), we discovered that expression of HERV-HX2, a clustered HERV-H sequence on chromosome X, was upregulated in immortalized lung cells, compared to that of normal cells. Expression of HERV-HX2 was then analyzed in various cell lines, including normal somatic cells, cancer cells, SV40-immortalized cells, and undifferentiated and differentiated human embryonic stem cells. Expression of HERV-HX2 was specifically upregulated in continuously-dividing cells, such as cancer cells and SV40-immortalized cells. Especially, HERV-HX2 in HeLa cells was highly upregulated during the S phase of the cell cycle. Similar results were obtained in hES cells, in which undifferentiated cells expressed more HERV-HX2 mRNA than differentiated hES cells, including neural precursor and endothelial progenitor cells. Taken together, our results suggest that HERV-HX2 is upregulated in cancer cells and undifferentiated hES cells, whereas downregulated as differentiation progress. Therefore, we assume that HERV-HX2 may playa role on proliferation of cancer cells as well as differentiation of hES cells in the transcriptional level.

Interactions between Human Endogenous Retrovirus (HERV) and Human Immunodeficiency Virus (HIV) (인간 내성 리트로 바이러스(HERV)와 인간 면역 결핍 바이러스(HIV)의 상관관계)

  • Ock, Mee Sun;Kim, Heui-Soo;Cha, Hee-Jae
    • Journal of Life Science
    • /
    • v.25 no.4
    • /
    • pp.481-485
    • /
    • 2015
  • Retroviruses genes have been inserted into the human genome for millions of years. These retroviruses are now inactive due to mutations such as deletions or nonsense mutations. After mutation, retroviruses eventually became fixed in the genome in their endogenous forms and existed as traces of ancient viruses. These retroviruses are called endogenous retroviruses (ERVs), with the human form known as human endogenous retrovirus. HERV cannot become a fully active virus, but a number of viral proteins or even virus particles are expressed under various conditions. Compared to endogenous retroviruses, some exogenous retroviruses are still infectious and can threaten human life. Among these, human immunodeficiency virus (HIV) is one of the most well-known and best-studied. Recent studies have shown some elements of HERV were activated by HIV infection and interact with HIV-derived proteins. In addition, many studies have attempted to use HERV as vaccination against HIV infection. This review will describe the regulation and interaction between HERV and HIV infection and mention the development of vaccines and therapeutic agents against HIV infection by using HERV elements.

Identification and Phylogeny of the Human Endogenous Retrovirus HERV-W LTR Family in Human Brain cDNA Library and Xq21.3 Region

  • KIM, HEUI-SOO;TIMOTHY J. CRO
    • Journal of Microbiology and Biotechnology
    • /
    • v.12 no.3
    • /
    • pp.508-513
    • /
    • 2002
  • Human endogenous retroviral long terminal repeats (LTRs) have been found to be coexpressed with sequences of genes located nearby. It has been suggested that the LTR elements have contributed to the structural change or genetic variation of human genome connected to various diseases. The HERV-W family has been identified in the cerebrospinal fluids and brains of individuals with schizophrenia. Using a cDNA library derived from a human brain, the HERV-W LTR elements were examined and five new LTR elements were identified. These elements were examined using a YAC clone panel from the Xq21.3 region linked to psychosis that was replicated on the Y chromosome after the separation of the chimpanzee and human lineages. Fourteen elements of the HERV-W LTR were identified in that region. Those LTR elements showed a high degree of sequence similarity ($91.8-99.5\%$) with previously reported HERV-W LTR. A phylogenetic tree obtained from the neighbor-joining method revealed that new HERV-W LTR elements were closely related to the AXt000960, AF072504, and AF072506 from the GenBank database. The data indicates that several copy numbers of the HERV-W LTR elements exist on the Xq21.3 region and are also expressed in the human brain. These LTR elements need to be further investigated as potential leads to neuropsychiatric diseases.

Identification and Phylogeny of the Human Endogenous Retrovirus HERV-W LTR Family in Schizophrenia

  • Huh, Jae-Won;Yi, Joo-Mi;Kim, Heui-Soo
    • Journal of Life Science
    • /
    • v.11 no.2
    • /
    • pp.83-86
    • /
    • 2001
  • The long terminal repeat (LTR) elements of human endogenous retrovirus (HERV) have been found to be coexpressed with genes located nearby. It has been suggested that the LTR elements have contributed to the genetic variation of human genome connected to various diseases. Recently, HERV-W family was identified in the cerebrospinal fluids and brains of individuals with schizophrenia. Using genomic DNAs derived from schizophrenia, we performed PCR amplification and identified six HERV-W LTR elements. Those LTR elements showed a high degree of sequence similarity (87.7-99.5%) with HERV-W LTR (AF072500). Sequence analysis of the HERV-W LTR elements revealed that clone W-sch1 showed identical sequence with the AC003014 (PAC clone RP1-290B4) derived from human Xq23. Clone W-sch2 was closely related to the AC0072442 derived from human Y chromosome by phylogenetic analysis. Our data suggest that new HERV-W LTR elements in schizophrenia may be very useful for further studies to understand neuropsychiatric diseases.

  • PDF