• Title/Summary/Keyword: HEM (Heat Exchange Method)

Search Result 3, Processing Time 0.015 seconds

Heat and Fluid Flow Analysis on the Effect of Crucible Heat Conductivity and Flow Rate of Ar to Solidification of Polycrystalline Silicon Ingot (다결정 Si ingot 응고 시 도가니 열전도도 및 Ar 유입량 변화에 대한 열유체 해석)

  • Shin, Sang-Yun;Ye, Byung-Joon
    • Journal of Korea Foundry Society
    • /
    • v.32 no.6
    • /
    • pp.276-283
    • /
    • 2012
  • This study presents the results on the changes of crucible thermal conductivity and inflow of Ar, and constructed the mathematical model about heat transfer into furnace. As process variables, simulation model was designated thermal conductivity of crucible to $0.5W{\cdot}m^{-1}{\cdot}K^{-1}$, $1W{\cdot}m^{-1}{\cdot}K^{-1}$, $2W{\cdot}m^{-1}{\cdot}K^{-1}$, $4W{\cdot}m^{-1}{\cdot}K^{-1}$, and inflow rate of Ar to 15 L/min, 30 L/min, 60 L/min. Initial condition and boundary condition were set respectively in two terms of process. Each initial conditions were set up by the preceding simulation of heat and fluid flow. The primary goal is the application of unidirectional growth of Si ingot using the result. In the result of the change of heat conductivity of crucible, the higher thermal conductivity of crucible shows the shorter solidification time and the bigger temperature difference. And the flow patterns are changed with the inflow rate of Ar. Finally, we found that the lower crucible's thermal conductivity, the better crucible is at polycrystalline Si ingot growth. But in case of Ar inflow, it is hard to say about good condition. This data will be evaluated as useful reference used in allied study or process variable control of production facilities.

Simulation by heat transfer of ADS process for large sized polycrystalline silicon ingot growth (대형 다결정 실리콘 잉곳 성장을 위한 ADS 법의 열유동에 관한 공정모사)

  • Shur, J.W.;Hwang, J.H.;Kim, Y.J.;Moon, S.J.;So, W.W.;Yoon, D.H.
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.18 no.1
    • /
    • pp.45-49
    • /
    • 2008
  • The development of manufacturing process of silicon (Si) ingots is one of the important issues to the growth of the photovoltaic industry. Polycrystalline Si wafers shares more than 60% of the photovoltaic market due to its cost advantage compared to mono crystalline silicon wafers. Several solidification processes have been developed by industry including casting, heat exchange method (HEM) and electromagnetic casting. In this paper, the advanced directional solidification (ADS) method is used to growth of large sized polycrystalline Si ingot. This method has the advantages of the small heat loss, short cycle time and efficient directional solidification. The numerical simulation of the process is applied using a fluid dynamics model to simulate the temperature distribution. The results of simulations are confirmed efficient directional solidification to the growth of large sized polycrystalline Si ingot above 240 kg.

Silicon purification through acid leaching and unidirectional solidification (산처리와 일방향 응고를 이용한 실리콘 정제)

  • Eum, Jung-Hyun;Chang, Hyo-Sik;Kim, Hyung-Tae;Choi, Kyoon
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.18 no.6
    • /
    • pp.232-236
    • /
    • 2008
  • Recently the shortage of silicon resources especially for poly-silicon of purity higher than 99.9999% leads to search for the more cheap and quick synthesizing routes for silicon feedstock. In order to solve this situation, we investigated the purification process of metallurgical grade (MG) silicon of purity around 99% by the acid leaching and following the unidirectional solidification. MG-Si lumps are pulverized with a planetary mill, and then leached with HCl/$HNO_3$/HF acid solution. As a result, the concentration of metal impurities including Al, Fe, Ca, Mn, etc. decreased dramatically. This process led to silicon content higher than 99.99%. The purified silicon powders were compacted and have been melted and uni-directionally solidified with heat exchange method (HEM) furnace. The properties of multicrystalline silicon ingots were specific resistance of $0.3{\Omega}{\cdot}cm$ and minority carrier life time (MCLT) of $3.8{\mu}{\cdot}sec$.