• Title/Summary/Keyword: HEAVY METAL IONS

Search Result 506, Processing Time 0.024 seconds

Transport of Zn Ion under various pH Conditions in a Sandy Soil (사질토양에서의 pH조건에 따른 Zn의 이동특성)

  • Park, Min-Soo;Kim, Dong-Ju
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.22 no.1
    • /
    • pp.33-42
    • /
    • 2000
  • Adsorption onto the surfaces of solid particles is a well known phenomenon that causes the retardation effect of heavy metals in soils. For adequate remediation of soil and groundwater contamination, it is important to investigate the mobility of heavy metals that largely depends on pH conditions in the soil water since adsorption of heavy metals is pH-dependent. In this study, we investigated the transport of Zn ion under various pH conditions in a sandy soil by conducting batch and column tests. The batch test was performed using the standard procedure of equilibrating fine fractions collected from the soil with eleven different initial $ZnCl_2$ concentrations, and analysis of Zn ion in the equilibrated solutions using ICP-AES. The column test consisted of monitoring the concentrations of soil solutions exiting the soil column with time known as a breakthrough curve (BTC). We injected respectively $ZnCl_2$ and KCl solutions with the concentration of 10 g/L as a tracer in a square pulse type under three different pH conditions (7.7, 5.8, 4.1) and monitored the flux concentration at the exit boundary using an EC meter and ICP-AES. The resident concentration was also monitored at the 10cm-depth by Time Domain Reflectometry (TDR). The results of batch test showed that ion exchange process between Zn and other cations (Ca, Mg) was predominant. The retardation coefficients obtained from adsorption isotherms (Linear, Freundlich, Langmuir) resulted in the various values ranging from 1.2 to 614.1. No retardation effect but ion exchange was found for the BTCs under all pH conditions. This can be explained by the absence of other cations to desorb Zn ion from soil exchange sites under the conditions of ETC experiment imposing blank water as leachate in steady-state flow. As pH decreased, the peak concentration of Zn increased due to the competition of Zn with hydrogen ions ($H^+$) and the concentrations of other cations decreased. The peak concentration of Zn was increased by 12.7 times as pH decreased from 7.7 to 4.1.

  • PDF

Immunocytochemistry of Metallothionein Expression in Developing Rat Liver (발생중인 흰쥐 간에서의 Metallothionein 발현에 관한 면역세포화학적 연구)

  • Oh, Seung-Han;Ahn, Young-Mo;Shin, Kil-Sang;Kim, Wan-Jong
    • Applied Microscopy
    • /
    • v.34 no.3
    • /
    • pp.171-178
    • /
    • 2004
  • Metallothionein (MT) is a family of ubiquitous, low molecular weight (6-7 kDa), cysteine-rich protein with a high affinity to metal ions and has no aromatic amino acids and histidine. Some of the known functions of MT include detoxification of heavy metals and alkylating agents and neutralization of free radicals. Also, this protein may affect a number of cellular processes including gene expression, apoptosis, proliferation and differentiation. But, its actual functions are still not clear. The present study was undertaken to examine immunocytochemically the localization of MT in developing rat liver. On the day 11 of gestation, the fetal rat liver has already been formed and contained numerous oval cells with high nuclear cytoplasmic ratio, which were the progenitors of hepatic parenchymal cells, but no reaction products of MT were detected at this time. And then, positive reactions against MT started to appear predominantly in the parenchymal cells of liver from the 13th day after gestation. Reaction products, immunogold particles or brown coloration, were localized at both the nucleus and the cytoplasm of the parenchymal cells, except mitochondria. The intensity of this reaction gradually increased, and exhibited the strongest at birth. The intensity of MT staining and immunogold labelling diminished with growth, and by the 15th day after birth weak positive reaction was observed in the cells. In brief, positive reactions for MT were observed in the oval cells and the parenchymal cells during fetal stage, meanwhile they were present only in the parenchymal cells after birth. The present results suggest that MT possibly involves parechymal cell proliferation and differentiation through the storage or the supply of various metal ions in the developing rat liver.

Changes of Chemical Species in Soil Solution Induced by Heavy Metals (중금속이 토양용액 중 화학종 변화에 미치는 영향)

  • Yang, Jae-E.;Lee, Ki-Won;Kim, Jeong-Je;Lim, Hyung-Sik
    • Korean Journal of Environmental Agriculture
    • /
    • v.14 no.3
    • /
    • pp.263-271
    • /
    • 1995
  • Chemical assessment of soil pollution with heavy metals was made by analyzing the changes in pH, ionic strength, cationic concentration and chemical species in the soil solution. Saturated pastes of the unpolluted soils were made by adding solutions containing Cu or Cd and the final Cu or Cd concentrations were in the range of 0 to 400 mg/kg. After equilibrating for 24 hours at $25^{\circ}C$, the soil solution was extracted from the saturated pastes by the vacuum extraction method and analyzed for pH, electrical conductivity, Cu, Cd, cations and inorganic ligands. Chemical species in soil solution were calculated by the GEOCHEM-PC program employing the input variables of pH, ionic strength(${\mu}$), molar concentrations of cations and ligands. Increasing Cu or Cd additions lowered pH of the soil solution but increased concentrations of Ca, Mg and K resulting in increases of ${\mu}$ of the soil solution. Effects of Cu on lowering pH and increasing ${\mu}$ were greater than those of Cd. Concentrations of Cu or Cd in soil solution were relatively very low as compared to those of additions, but increased linearly with increasing additions representing that concentrations of Cu were higher than those of Cd. At 400 mg/kg additions, concentrations of Cu were in the range of 0.51 to 11.70 mg/L but those of Cd were 34.4 to 88.5 mg/L. Major species of Ca, Mg and K were free ions and these species were equivalent to greater than 95 molar % of the existing respective molar concentrations. These cationic species were not changed by Cu or Cd additions. Major species of Cu in lower pH soils such as SiCL and SL were free $Cu^{2+}$ (>95 molar %), but those in LS having a higher pH were free $Cu^{2-}$ and Cu-hydroxide complex. At 100 mg Cu/kg treatment, $Cu^{2+}$ and Cu-hydroxide complex were equivalent to 73 and 22.4 molar %, respectively. These respective percentages were decreased and increased correspondingly with increasing Cu treatments. Major species of Cd in soil solution were free $Cd^{2+}$ and Cd-chloride complex, representing 79 to 85 molar % for $Cd^{2+}$ and 13 to 20% for Cd-chloride complex at 10 mg Cd/kg treatment. With increasing Cd additions to 400 mg/kg, $Cd^{2+}$ species decreased to $40{\sim}47%$ but Cd-chloride complexes increased to $53{\sim}60$ molar %. These results demonstrated that soil contamination with heavy metals caused an adverse effect on the plant nutritional aspects of soil solution by lowering pH, increasing cations temporarily, and increasing free metal concentrations and species enough to be phytotoxic.

  • PDF

Characteristic Assessment of Heavy Metals in Dusts Collected by the Air Filtration System at Subway Stations in Daegu, Korea (대구지역 지하철역사 공기여과필터 포집먼지에 함유된 중금속성분의 특성평가)

  • Do, Hwa-Seok;Song, Hee-Bong;Shin, Dong-Chan;Kwak, Jin-Hee;Lee, Myoung-Sook;Yoon, Ho-Suk;Kang, Hye-Jung;Phee, Young-Gyu
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.31 no.1
    • /
    • pp.42-50
    • /
    • 2009
  • Samples of subway dust were collected by the air filter system of 30 subway stations on Daegu subway line 1 in January 2008. Samples were sieved below 100 ${\mu}m$, and 14 elements were analyzed using ICP after acid extraction. Results obtained from the source assessment of trace elements using enrichment factor showed that Ca, Fe, K, Mg, Mn, Na, V were influenced by natural sources such as weathered rock and resuspended soil, while Cd, Cr, Cu, Ni, Pb and Zn were influenced by anthropogenic sources such as fuel combustion and waste incineration. Concentrations were remarkably higher in components from natural sources than in components from anthropogenic sources. Anthropogenic sources were significantly affected by indoor dusts than outdoor dusts. Results of pollution indices of heavy metals indicated that indoor dusts were more contaminated with heavy metal ions than outdoor dusts. The correlation analysis among trace elements indicated that components were much correlated in the order of natural sources-anthropogenic sources, anthropogenic sources-anthropogenic sources, natural sources-natural sources in both indoor and outdoor dusts. Trace element components of outdoor dusts were largely correlated than those of indoor dusts. In addition, indoor dusts were significantly affected by outdoor dusts rather than depth from the surface or the average daily number of subway passengers.

Preparation of Nickel Hexacyanoferrate Ion Exchanger for Electrochemical Separation of Cations (양이온의 전기화학적 분리를 위한 페리시안니켈 이온교환체의 제조에 관한 연구)

  • Lee, Ji Hyun;Hwang, Young Gi
    • Applied Chemistry for Engineering
    • /
    • v.21 no.1
    • /
    • pp.52-57
    • /
    • 2010
  • Although chemical sedimentation and ion exchange are usually applied to the treatment of heavy metal ions and radioactive cations, they have some serious disadvantages like a great consumption of chemicals, the disposal of valuable metals, and the secondary pollution of soil by the solid-waste. The advanced countries recently have studied the electrochemical ion exchange, combined electrochemical reduction and ion exchange, for the development of the alternative technique. This study has been performed to investigate the optimum condition for the preparation of the nickel hexacyanoferrate (NiHCNFe) which is an electrochemical ion exchanger. NiHCNFe film was deposited on the surface of nickel plate by chemical method or electrochemical method. The morphology and composition of NiHCNFe were observed by SEM and EDS, respectively. The peak current density of NiHCNFe was measured from the cyclic voltammograms of the continuous oxidation-reduction reaction in a parallel plane ion exchange electrode reactor. It was found that the chemical preparation method was better than the electrochemical method. The concentrated NiHCNFe was apparently deposited on nickel plate when dipping in the preparing solution for 118 h, especially. It also had a best durable performance as an ion exchange electrode.

Manufacturing artificial lightweight aggregates using coal bottom ash and its application to the lightweight-concretes (석탄 바닥재를 이용한 인공경량골재의 제조 및 경량 콘크리트에 적용)

  • Kim, Kang-Duk;Kang, Seung-Gu
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.18 no.5
    • /
    • pp.211-216
    • /
    • 2008
  • The artificial lightweight aggregate (ALA) was manufactured in a rotary kiln at $1125^{\circ}C$ using green body formed by pelletizing the batch powder composing of coal bottom ash (CBA) produced from power plant, clay and dredged soil (DS). The TCLP (Toxicity characteristic leaching procedure) results showed that the dissolution concentration of heavy metal ions of ALA fabricated in this study was below the limitation defined by the enforcement regulations of wastes management law in Korea. The ALA containing 60$\sim$70 wt% CBA had a bulk density of 1.45$\sim$1.49 and a water absorption of 17.2$\sim$18.5 %. The impact values for oven-dry state and saturated-surface dry state of ALA were 27.4$\pm$1.3 and 23.4$\pm$2.6 % respectively. The 28-days compressive strength of concrete made with various ALA was $22.7\sim27.8 N/mm^2$. The slump of concrete with ALA containing CBA 60 and 70 wt% were 7.9 and 14.3 cm respectively. The unit weight of concrete made with any ALA fabricated in this study was satisfied with the standard specifications of lightweight concrete for the civil engineering and construction presented by Korea as below $1.84 ton/m^3$.

Adsorption Characterization of Cd by Coal Fly Ash Using Response Surface Methodology (RSM) (반응표면분석법을 이용한 석탄회에서의 Cd 흡착특성에 관한 연구)

  • An, Sangwoo;Choi, Jaeyoung;Cha, Minwhan;Park, Jaewoo
    • Journal of the Korean GEO-environmental Society
    • /
    • v.11 no.1
    • /
    • pp.19-26
    • /
    • 2010
  • The batch experiments and response surface methodology (RSM) have been applied to the investigation of the cadmium (Cd) adsorption by coal fly ash (CFA). CFA having maximum Cd removal mass of 8.51 mg/g were calculated from Langmuir model. Cd removal reaction with different initial pH ranged from 4 to 9. When the initial pH was higher, Cd was removed more by adsorption and precipitation. These results suggest that the lower pH cause an increase of $H^+$ ion concentration which competed with Cd ions for exchange sites in CFA. Also, The Cd adsorption was mathematically described as a function of parameters initial Cd concentration ($X_1$), initial pH ($X_2$), and initial CFA mass ($X_3$) being modeled by use of the Box-Behnken methods. Empirical models were developed to describe relationship between the experimental variables and response. Statistical analysis indicates that tree factors ($X_1$, $X_2$, and $X_3$) on the linear term (main effects), and tree factors ($X_1X_2$, $X_1X_3$, and $X_2X_3$) on the non-linear term (Interaction effect; cross-product) had significant effects, respectively. In this case, the value of the adjusted determination coefficient (adjusted $R^2=0.9280$) was closed to 1, showing a high significance of the model. Statistical results showed the order of Cd removal at experimental factors to be initial initial pH > initial Cd concentration > initial CFA mass.

Immunocytochemical Localization of Metallothionein in Gastric Adenocarcinoma (위암 조직내 Metallothionein의 면역 세포화학적 연구)

  • Yang, Seung-Ha;Shin, Kil-Sang;Kim, Wan-Jong
    • Applied Microscopy
    • /
    • v.32 no.4
    • /
    • pp.411-419
    • /
    • 2002
  • Metallothionein (MT) is a family of ubiquitous, low molecular weight ($6,000{\sim}7,000D$), cysteine-rich ($30{\sim}35%$) inducible protein with a high affinity to metal ions and has no aromatic amino acids and histidine. Some of the known functions of MT include detoxification of heavy metals and alkylating agents and neutralization of free radicals. Also, this protein has been reported to involve in tumor pathophysiology and therapy resistance. MT expression may affect a number of cellular processes including gene expression, apoptosis, proliferation and differentiation. Many reports on the physiological and biochemical properties of MT have been published, but ultrastructural reports on the localization of MT in human gastric cancer tissues are extremely rare. The present study was undertaken to examine the ultrastructural features and the localization of MT within the gastric adenocarcinoma. Ultrastructures of gastric cancer cells were characterized by the high nuclear cytoplasmic ratio, the interdigitation between cells, the irregular nucleus containing much heterochromatin and the wide distribution of free ribosomes in the cytoplasm. Immunohistochemical reaction for MT was prominent in the gastric adenocarcinoma. And the immunogold labellings were more prominent within the nucleus than the cytoplasm. Particularly, immunogold particles were numerously seen at nulcleolus or nucleolar associated heterochromatin. These results suggest that MT expression by gastric cancer cells is associated with cell proliferative activity and is possibly synthesized in the cytoplasm, and then the protein is transported into the nucleus to participate in any transcriptional steps.

Sruvey of Raw Silk Reeling Water in Korea (우리나라 제사용수의 실태 조사)

  • Sung, J. C.;Lee, D.;Lee, D. S.;Kho, C. S.;Choi, K. S.;Jou, W. H.
    • Journal of Sericultural and Entomological Science
    • /
    • v.29 no.2
    • /
    • pp.73-81
    • /
    • 1987
  • This investigation was carried cut to obtain the reeling water conditions in Korea. The analyzed items of water were pH, colority, turbidity, acidity, alkalinity, solids electric conductibity hardness and heavy metal ions. About 40% of the reeling water were found to be agreeable, 30% were acceptable provided with some quality control and the others were out of acceptable range mainly based on the M-alkalinity, acidity, pH and total hardness. It was found that there was a following relationship between total hardness and electric conductibity with the relative correlation coefficient r=0.9145. y=15.967+0.22774x Where x, y are electric conductivity and total hardness respectively.

  • PDF

Research for Performance Improvement of De-NOx of Cu-SCR Catalysts (Cu-SCR 촉매의 De-NOx 성능 향상을 위한 연구)

  • Seo, Choong-Kil
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.3
    • /
    • pp.112-118
    • /
    • 2018
  • In order to meet the strict emission regulations for internal combustion engines based on fossil fuel, the proportion of after-treatments for vehicles and vessels is gradually increasing. Diesel engines have high power, good fuel economy, and lower $CO_2$ emissions, and their market shares are increasing in commercial vehicles and passenger cars. However, NOx is generated in the localized high-temperature combustion regions, and particulate matter is formed in the zones of diffusion combustion. LNT and urea-SCR catalysts have been developed for after-treatment of the exhaust gas to reduce NOx in diesel vehicles. This study aims to improve the NOx reduction performance of Cu SCR catalyst, which is widely used in light, medium, and heavy-duty diesel engines. The de-NOx performance of $5Cu-2ZrO_2$/93Zeolyst(Si/Al=13.7) SCR catalyst was about 5-50% higher than that of $5Cu-2ZrO_2$/93Zeolite(Si/Al=2.9) at catalyst temperatures of $300^{\circ}C$ or higher. The zeolite had lower metal dispersion than zeolyst, and the reaction rate of the catalyst decreased as the average particle size increased. The $10Cu-2ZrO_2$/88Zeolyst catalyst loaded with 10wt% Cu had the highest NOx conversion rate of 40% at $200^{\circ}C$ and about 65% at $350^{\circ}C$. The ion exchange rate of Cu ions increased with that of Al, the crystalline compound of zeolite, and the de-NOx performance was improved by 20-40% compared to other catalysts.