• 제목/요약/키워드: HDAC2

검색결과 105건 처리시간 0.035초

HDAC 저해제에 의한 인체 백혈병 U937 세포의 apoptosis 유발에 미치는 Bcl-2의 영향 (Effects of Bcl-2 Overexpressing on the Apoptotic Cell Death Induced by HDAC Inhibitors in Human Leukemic U937 Cells)

  • 이준혁;허만규;박동일;최병태;최영현
    • 생명과학회지
    • /
    • 제17권4호
    • /
    • pp.552-560
    • /
    • 2007
  • 본 연구에서는 인체백혈병세포 U937에서 HDAC 저해제에 의한 증식억제, 세포주기 교란 및 apoptosis 유도에 미치는 Bcl-2 유전자의 영향에 관하여 조사하였다. 이를 위하여 U937/vector 및 U937/Bcl-2 세포주를 대상으로 대표적인 HDAC 저해제인 TSA 및 Na-B 처리에 의한 세포 증식 및 생존율에 미치는 영향을 조사한 결과, TSA에 의한 U937 세포의 증식억제 및 생존율의 감소는 Bcl-2의 과발현에 의하여 차단되는 효과를 보였으나, Na-B는 U937/vector 및 U937/Bcl-2세포사이에 큰 변화를 보이지는 않았다. 세포주기 교란효과에서 Na-B는 TSA에 비하여 유의적인 차이를 보이지 못하였으며, 이는 TSA에 의한 apoptosis가 U937/Bcl-2 세포에서는 억제되었으나, Na-B에 의한 apoptosis는 Bcl-2의 과발현에 의하여 차단되지 못한 것과 연관성이 있는 결과였다. 또한 TSA에 의한 apoptosis 유발의 Bcl-2에 의한 차단 효과는 TSA에 의하여 활성화된 caspase의 활성 억제, Bcl-2 발현 자체의 완화 등 apoptosis 조절 인자들의 발현 및 활성 변화에 기인 된 것임을 알 수 있었다.

Classification of HDAC8 Inhibitors and Non-Inhibitors Using Support Vector Machines

  • Cao, Guang Ping;Thangapandian, Sundarapandian;John, Shalini;Lee, Keun-Woo
    • Interdisciplinary Bio Central
    • /
    • 제4권1호
    • /
    • pp.2.1-2.7
    • /
    • 2012
  • Introduction: Histone deacetylases (HDAC) are a class of enzymes that remove acetyl groups from ${\varepsilon}$-N-acetyl lysine amino acids of histone proteins. Their action is opposite to that of histone acetyltransferase that adds acetyl groups to these lysines. Only few HDAC inhibitors are approved and used as anti-cancer therapeutics. Thus, discovery of new and potential HDAC inhibitors are necessary in the effective treatment of cancer. Materials and Methods: This study proposed a method using support vector machine (SVM) to classify HDAC8 inhibitors and non-inhibitors in early-phase virtual compound filtering and screening. The 100 experimentally known HDAC8 inhibitors including 52 inhibitors and 48 non-inhibitors were used in this study. A set of molecular descriptors was calculated for all compounds in the dataset using ADRIANA. Code of Molecular Networks. Different kernel functions available from SVM Tools of free support vector machine software and training and test sets of varying size were used in model generation and validation. Results and Conclusion: The best model obtained using kernel functions has shown 75% of accuracy on test set prediction. The other models have also displayed good prediction over the test set compounds. The results of this study can be used as simple and effective filters in the drug discovery process.

Synthesis and Importance of Bulky Aromatic Cap of Novel SAHA Analogs for HDAC Inhibition and Anticancer Activity

  • Chun, Pu-Soon;Kim, Won-Hee;Kim, Jung-Su;Kang, Jin-Ah;Lee, Hye-Jin;Park, Ji-Young;Ahn, Mee-Young;Kim, Hyung-Sik;Moon, Hyung-Ryong
    • Bulletin of the Korean Chemical Society
    • /
    • 제32권6호
    • /
    • pp.1891-1896
    • /
    • 2011
  • On the basis of potent HDAC-inhibitory activity and anticancer activity of SAHA, novel SAHA derivatives 3a-d and 7 with a bulky cap such as p-dimethylaminophenyl, 4-phenylaminophenyl, 4-phenyloxyphenyl, 9H-fluorenyl or naphthalenyl ring were synthesized starting from the corresponding aryl amines or naphthalenyl acetic acid using an EDC-mediated amide coupling reaction in the presence of HOBt followed by a nucleophilic addition-elimination reaction with hydroxylamine. Compounds 3b, 3c and 3d showed more potent inhibitory activity on total HDACs (14~27-fold), HDAC1 (8~15-fold), HDAC2 (1.3~25-fold) and HDAC7 (1~3-fold) and more potent anticancer activity (2~22-fold) against MCF-7, MDA-MB-231, MCF-7/Dox, MCF-7/Tam, SK-OV-3, LNCaP and PC3 human cancer cell lines than SAHA.

Fine-tuning of gene expression dynamics by the Set2-Rpd3S pathway

  • Lee, Bo Bae;Kim, Ji Hyun;Kim, TaeSoo
    • BMB Reports
    • /
    • 제50권4호
    • /
    • pp.162-163
    • /
    • 2017
  • RNA polymerase II-interacting the Set2 methyltransferase co-transcriptionally methylates histone H3 at lysine 36 within the body of genes. This modification facilitates histone deacetylation by Rpd3S HDAC in 3' transcribed regions to suppress cryptic initiation and slow elongation. Although this pathway is important for global deacetylation, no strong effects have been seen on genome-wide transcription under optimized laboratory conditions. In contrast, this pathway slows the kinetics of mRNA induction when target genes are induced upon environmental changes. Interestingly, a majority of Set2-repressed genes are overlapped by a lncRNA transcription that targets H3K36 methylation and deacetylation by Rpd3S HDAC to mRNA promoters. Furthermore, this pathway delays the induction of many cryptic transcripts upon environmental changes. Therefore, the Set2-Rpd3S HDAC pathway functions to fine-tune expression dynamics of mRNAs and ncRNAs.

Effect of Trichostatin A on Anti HepG2 Liver Carcinoma Cells: Inhibition of HDAC Activity and Activation of Wnt/β-Catenin Signaling

  • Shi, Qing-Qiang;Zuo, Guo-Wei;Feng, Zi-Qiang;Zhao, Lv-Cui;Luo, Lian;You, Zhi-Mei;Li, Dang-Yang;Xia, Jing;Li, Jing;Chen, Di-Long
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제15권18호
    • /
    • pp.7849-7855
    • /
    • 2014
  • Purpose: To investigate the effect of deacetylase inhibitory trichostatin A (TSA) on anti HepG2 liver carcinoma cells and explore the underlying mechanisms. Materials and Methods: HepG2 cells exposed to different concentrations of TSA for 24, 48, or 72h were examined for cell growth inhibition using CCK8, changes in cell cycle distribution with flow cytometry, cell apoptosis with annexin V-FTIC/PI double staining, and cell morphology changes under an inverted microscope. Expression of ${\beta}$-catenin, HDAC1, HDAC3, H3K9, CyclinD1 and Bax proteins was tested by Western blotting. Gene expression for ${\beta}$-catenin, HDAC1and HDAC3 was tested by q-PCR. ${\beta}$-catenin and H3K9 proteins were also tested by immunofluorescence. Activity of Renilla luciferase (pTCF/LEF-luc) was assessed using the Luciferase Reporter Assay system reagent. The activity of total HDACs was detected with a HDACs colorimetric kit. Results: Exposure to TSA caused significant dose-and time-dependent inhibition of HepG2 cell proliferation (p<0.05) and resulted in increased cell percentages in G0/G1 and G2/M phases and decrease in the S phase. The apoptotic index in the control group was $6.22{\pm}0.25%$, which increased to $7.17{\pm}0.20%$ and $18.1{\pm}0.42%$ in the treatment group. Exposure to 250 and 500nmol/L TSA also caused cell morphology changes with numerous floating cells. Expression of ${\beta}$-catenin, H3K9and Bax proteins was significantly increased, expression levels of CyclinD1, HDAC1, HDAC3 were decreased. Expression of ${\beta}$-catenin at the genetic level was significantly increased, with no significant difference in HDAC1and HDAC3 genes. In the cytoplasm, expression of ${\beta}$-catenin fluorescence protein was not obvious changed and in the nucleus, small amounts of green fluorescence were observed. H3K9 fluorescence protein were increased. Expression levels of the transcription factor TCF werealso increased in HepG2 cells following induction by TSA, whikle the activity of total HDACs was decreased. Conclusions: TSA inhibits HDAC activity, promotes histone acetylation, and activates Wnt/${\beta}$-catenin signaling to inhibit proliferation of HepG2 cell, arrest cell cycling and induce apoptosis.

C2C12 골격근 세포에서 히스톤 탈 아세틸 효소의 억제가 인슐린 유사성장인자(IGF-I)에 의한 BDNF 발현 조절에 미치는 영향 (Insulin-like Growth Factor-I Modulates BDNF Expression by Inhibition of Histone Deacetylase in C2C12 Skeletal Muscle Cells)

  • 김혜진;이원준
    • 생명과학회지
    • /
    • 제27권8호
    • /
    • pp.879-887
    • /
    • 2017
  • 히스톤 탈 아세틸 효소(HDAC)와 인슐린유사성장인자(IGF-I)는 근육 관련 유전자들의 활성 및 발현을 조절하여 골격근의 성장 및 발달을 조절하지만 이들이 근신경계 발달 및 대사 기능에 중요한 역할을 담당하는 뇌신경성장인자(BDNF)의 발현에 미치는 영향에 관한 연구는 거의 이루어지지 않았다. 따라서 본 연구에서는 IGF-I과 HDAC의 억제제인 SAHA가 C2C12 골격근 세포에서 BDNF 발현에 미치는 영향을 알아보고자 하였다. 그 결과 IGF-I은 농도와 시간 의존적으로 BDNF의 mRNA 및 단백질 발현을 감소시켰지만 HDAC을 억제하자 IGF-I에 의해 감소되었던 BDNF의 발현이 증가하는 경향을 관찰할 수 있었다. 따라서 IGF-I은 BDNF의 발현을 억제하며, HDAC의 억제는 IGF-I에 의한 BDNF의 발현 억제를 감소시킬 수 있다는 사실을 확인할 수 있었다.

Transforming Growth Factor β Inhibits MUC5AC Expression by Smad3/HDAC2 Complex Formation and NF-κB Deacetylation at K310 in NCI-H292 Cells

  • Lee, Su Ui;Kim, Mun-Ock;Kang, Myung-Ji;Oh, Eun Sol;Ro, Hyunju;Lee, Ro Woon;Song, Yu Na;Jung, Sunin;Lee, Jae-Won;Lee, Soo Yun;Bae, Taeyeol;Hong, Sung-Tae;Kim, Tae-Don
    • Molecules and Cells
    • /
    • 제44권1호
    • /
    • pp.38-49
    • /
    • 2021
  • Airway mucus secretion is an essential innate immune response for host protection. However, overproduction and hypersecretion of mucus, mainly composed of the gel-forming MUC5AC protein, are significant risk factors for patients with asthma and chronic obstructive pulmonary disease (COPD). The transforming growth factor β (TGFβ) signaling pathway negatively regulates MUC5AC expression; however, the underlying molecular mechanism is not fully understood. Here, we showed that TGFβ significantly reduces the expression of MUC5AC mRNA and its protein in NCI-H292 cells, a human mucoepidermoid carcinoma cell line. This reduced MUC5AC expression was restored by a TGFβ receptor inhibitor (SB431542), but not by the inhibition of NF-κB (BAY11-7082 or Triptolide) or PI3K (LY294002) activities. TGFβ-activated Smad3 dose-dependently bound to MUC5AC promoter. Notably, TGFβ-activated Smad3 recruited HDAC2 and facilitated nuclear translocation of HDAC2, thereby inducing the deacetylation of NF-κB at K310, which is essential for a reduction in NF-κB transcriptional activity. Both TGFβ-induced nuclear translocation of Smad3/HDAC2 and deacetylation of NF-κB at K310 were suppressed by a Smad3 inhibitor (SIS3). These results suggest that the TGFβ-activated Smad3/HDAC2 complex is an essential negative regulator for MUC5AC expression and an epigenetic regulator for NF-κB acetylation. Therefore, these results collectively suggest that modulation of the TGFβ1/Smad3/HDAC2/NF-κB pathway axis can be a promising way to improve lung function as a treatment strategy for asthma and COPD.

The antidepressant action of 3-(2-carboxypiperazin-4-yl)propyl-1-phosphonic acid is mediated by phosphorylation of histone deacetylase 5

  • Park, Min Hyeop;Choi, Miyeon;Kim, Yong-Seok;Son, Hyeon
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제22권2호
    • /
    • pp.155-162
    • /
    • 2018
  • 3-(2-Carboxypiperazin-4-yl)propyl-1-phosphonic acid (CPP), a competitive N-methyl-D-aspartate (NMDA) receptor antagonist, produces rapid antidepressant-like effects in animal models of depression. However, the molecular mechanisms underlying these behavioral actions remain unknown. Here, we demonstrate that CPP rapidly stimulates histone deacetylase (HDAC) 5 phosphorylation and nuclear export in rat hippocampal neurons. These effects are accompanied by calcium/calmodulin kinase II (CaMKII) and protein kinase D (PKD) phosphorylation. Behavioral experiments revealed that viral-mediated hippocampal knockdown of HDAC5 blocked the antidepressant effects of CPP in stressed animals. Taken together, our results imply that CPP acts via HDAC5 and suggest that HDAC5 is a common regulator contributing to the antidepressant actions of NMDA receptor antagonists such as CPP.

Evidence of an Epigenetic Modification in Cell-cycle Arrest Caused by the Use of Ultra-highly-diluted Gonolobus Condurango Extract

  • Bishayee, Kausik;Sikdar, Sourav;Khuda-Bukhsh, Anisur Rahman
    • 대한약침학회지
    • /
    • 제16권4호
    • /
    • pp.7-13
    • /
    • 2013
  • Objectives: Whether the ultra-highly-diluted remedies used in homeopathy can effectively bring about modulations of gene expressions through acetylation/deacetylation of histones has not been explored. Therefore, in this study, we pointedly checked if the homeopathically-diluted anti-cancer remedy Condurango 30C (ethanolic extract of Gonolobus condurango diluted $10^{-60}$ times) was capable of arresting the cell cycles in cervical cancer cells HeLa by triggering an epigenetic modification through modulation of the activity of the key enzyme histone deacetylase 2 vis-a-vis the succussed alcohol (placebo) control. Methods: We checked the activity of different signal proteins (like $p21^{WAF}$, p53, Akt, STAT3) related to deacetylation, cell growth and differentiation by western blotting and analyzed cell-cycle arrest, if any, by fluorescence activated cell sorting. After viability assays had been performed with Condurango 30C and with a placebo, the activities of histone de-acetylase (HDAC) enzymes 1 and 2 were measured colorimetrically. Results: While Condurango 30C induced cytotoxicity in HeLa cells in vitro and reduced HDAC2 activity quite strikingly, it apparently did not alter the HDAC1 enzyme; the placebo had no or negligible cytotoxicity against HeLa cells and could not alter either the HDAC 1 or 2 activity. Data on $p21^{WAF}$, p53, Akt, and STAT3 activities and a cell-cycle analysis revealed a reduction in DNA synthesis and G1-phase cell-cycle arrest when Condurango 30C was used at a 2% dose. Conclusion: Condurango 30C appeared to trigger key epigenetic events of gene modulation in effectively combating cancer cells, which the placebo was unable to do.

HDAC6 siRNA Inhibits Proliferation and Induces Apoptosis of HeLa Cells and its Related Molecular Mechanism

  • Qin, Hai-Xia;Cui, Hong-Kai;Pan, Ying;Yang, Jun;Ren, Yan-Fang;Hua, Cai-Hong;Hua, Fang-Fang;Qiao, Yu-Huan
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제13권7호
    • /
    • pp.3367-3371
    • /
    • 2012
  • Objective: To investigate the effects of histone deacetylase 6 (HDAC6) siRNA on cell proliferation and cell apoptosis of the HeLa cervical carcinoma cell line and the molecular mechanisms involved. Methods: Division was into three groups: A, the untreated group; B, the control siRNA group; and C, the HDAC6 siRNA group. Lipofectamine 2000 was used for siRNA transfection, and Western blot analysis was used to determine the protein levels. Cell proliferation and apoptosis were characterized using a CCK-8 assay and flow cytometry, respectively. Results: HDAC6 protein expression in the HDAC6 siRNA-transfection group was significantly lower (P < 0.05) than in the untreated and control siRNA groups. The CCK-8 kit results demonstrated that the proliferation of HeLa cells was clearly inhibited in the HDAC6 siRNA transfection group (P < 0.05). In addition, flow cytometry revealed that the early apoptotic rate ($26.0%{\pm}0.87%$) was significantly elevated (P < 0.05) as compared with the untreated group ($10.6%{\pm}1.19%$) and control siRNA group ($8.61%{\pm}0.98%$). Furthermore, Western blot analysis indicated that bcl-2 protein expression in the HDAC6 siRNA-transfection group was down-regulated, whereas the expression of p21 and bax was up-regulated. Conclusion: HDAC6 plays an essential role in the occurrence and development of cervical carcinoma, and the down-regulation of HDAC6 expression may be useful molecular therapeutic method.