• Title/Summary/Keyword: HDAC

Search Result 171, Processing Time 0.027 seconds

Tubulin Beta3 Serves as a Target of HDAC3 and Mediates Resistance to Microtubule-Targeting Drugs

  • Kim, Youngmi;Kim, Hyuna;Jeoung, Dooil
    • Molecules and Cells
    • /
    • v.38 no.8
    • /
    • pp.705-714
    • /
    • 2015
  • We investigated the role of HDAC3 in anti-cancer drug-resistance. The expression of HDAC3 was decreased in cancer cell lines resistant to anti-cancer drugs such as celastrol and taxol. HDAC3 conferred sensitivity to these anti-cancer drugs. HDAC3 activity was necessary for conferring sensitivity to these anti-cancer drugs. The down-regulation of HDAC3 increased the expression of MDR1 and conferred resistance to anti-cancer drugs. The expression of tubulin ${\beta}3$ was increased in drug-resistant cancer cell lines. ChIP assays showed the binding of HDAC3 to the promoter sequences of tubulin ${\beta}3$ and HDAC6. HDAC6 showed an interaction with tubulin ${\beta}3$. HDAC3 had a negative regulatory role in the expression of tubulin ${\beta}3$ and HDAC6. The down-regulation of HDAC6 decreased the expression of MDR1 and tubulin ${\beta}3$, but did not affect HDAC3 expression. The down-regulation of HDAC6 conferred sensitivity to taxol. The down-regulation of tubulin ${\beta}3$ did not affect the expression of HDAC6 or MDR1. The down-regulation of tubulin ${\beta}3$ conferred sensitivity to anti-cancer drugs. Our results showed that tubulin ${\beta}3$ serves as a downstream target of HDAC3 and mediates resistance to microtubule-targeting drugs. Thus, the HDAC3-HDAC6-Tubulin ${\beta}$ axis can be employed for the development of anti-cancer drugs.

HDAC3 acts as a negative regulator of angiogenesis

  • Park, Deokbum;Park, Hyunmi;Kim, Youngmi;Kim, Hyuna;Jeoung, Dooil
    • BMB Reports
    • /
    • v.47 no.4
    • /
    • pp.227-232
    • /
    • 2014
  • Histone deacetylase-3 (HDAC3) is involved in cellular proliferation, apoptosis and transcriptional repression. However, the role of HDAC3 in angiogenesis remains unknown. HDAC3 negatively regulated the expression of angiogenic factors, such as VEGF and plasminogen activator inhibitor-1 (PAI-1). HDAC3 showed binding to promoter sequences of PAI-1. HDAC3 activity was necessary for the expression regulation of PAI-1 by HDAC3. VEGF decreased the expression of HDAC3, and the down-regulation of HDAC3 enhanced endothelial cell tube formation. HDAC3 negatively regulated tumor-induced angiogenic potential. We show the novel role of HDAC3 as a negative regulator of angiogenesis.

Histone Deacetylase-3/CAGE Axis Targets EGFR Signaling and Regulates the Response to Anti-Cancer Drugs

  • Kim, Hyuna;Kim, Youngmi;Goh, Hyeonjung;Jeoung, Dooil
    • Molecules and Cells
    • /
    • v.39 no.3
    • /
    • pp.229-241
    • /
    • 2016
  • We have previously reported the role of miR-326-HDAC3 loop in anti-cancer drug-resistance. CAGE, a cancer/testis antigen, regulates the response to anti-cancer drug-resistance by forming a negative feedback loop with miR-200b. Studies investigating the relationship between CAGE and HDAC3 revealed that HDAC3 negatively regulated the expression of CAGE. ChIP assays demonstrated the binding of HDAC3 to the promoter sequences of CAGE. However, CAGE did not affect the expression of HDAC3. We also found that EGFR signaling regulated the expressions of HDAC3 and CAGE. Anti-cancer drug-resistant cancer cell lines show an increased expression of $pEGFR^{Y845}$. HDAC3 was found to negatively regulate the expression of $pEGFR^{Y845}$. CAGE showed an interaction and co-localization with EGFR. It was seen that miR-326, a negative regulator of HDAC3, regulated the expression of CAGE, $pEGFR^{Y845}$, and the interaction between CAGE and EGFR. miR-326 inhibitor induced the binding of HDAC3 to the promoter sequences in anti-cancer drug-resistant $Malme3M^R$ cells, decreasing the tumorigenic potential of $Malme3M^R$ cells in a manner associated with its effect on the expression of HDAC3, CAGE and $pEGFR^{Y845}$. The down-regulation of HDAC3 enhanced the tumorigenic, angiogenic and invasion potential of the anti-cancer drug-sensitive Malme3M cells in CAGE-dependent manner. Studies revealed that $PKC{\delta}$ was responsible for the increased expression of $pEGFR^{Y845}$ and CAGE in $Malme3M^R$ cells. CAGE showed an interaction with $PKC{\delta}$ in $Malme3M^R$ cells. Our results show that HDAC3-CAGE axis can be employed as a target for overcoming resistance to EGFR inhibitors.

Nuclear localization signal domain of HDAC3 is necessary and sufficient for the expression regulation of MDR1

  • Park, Hyunmi;Kim, Youngmi;Park, Deokbum;Jeoung, Dooil
    • BMB Reports
    • /
    • v.47 no.6
    • /
    • pp.342-347
    • /
    • 2014
  • Histone acetylation/deacetylation has been known to be associated with the transcriptional regulation of various genes. The role of histone deacetylase-3 in the expression regulation of MDR1 was investigated. The expression level of HDAC3 showed an inverse relationship with the expression level of MDR1. Wild-type HDAC3, but not catalytic mutant $HDAC3^{S424A}$, negatively regulated the expression of MDR1. Wild-type HDAC3, but not catalytic mutant $HDAC3^{S424A}$, showed binding to the promoter sequences of HDAC3. HDAC3 regulated the expression level, and the binding of Ac-$H3^{K9/14}$ and Ac-$H4^{K16}$ around the MDR1 promoter sequences. The nuclear localization signal domain of HDAC3 was necessary, and sufficient for the binding of HDAC3 to the MDR1 promoter sequences and for conferring sensitivity to microtubule-targeting drugs.

New Yeast Cell-Based Assay System for Screening Histone Deacetylase 1 Complex Disruptor

  • Jeon, Kwon-Ho;Kim, Min-Jung;Kim, Seung-Young
    • Journal of Microbiology and Biotechnology
    • /
    • v.12 no.2
    • /
    • pp.286-291
    • /
    • 2002
  • Histone deacetylase I (HDAC1) works as one of the components in a nucleosome remodeling (NuRD) complex that consists of several proteins, including metastasis-associated protein 1 (MTA1). Since the protein-protein interaction of HDAC1 and MTA1 would appear to be important for both the integrity and functionality of the HDAC1 complex, the interruption of the HDAC1 and MTA1 interaction may be an efficient way to regulate the biological function of the HDAC1 complex. Based on this idea, a yeast two-hybrid system was constructed with HDAC1 and MTA1 expressing vectors in the DNA binding and activation domains, respectively. To verify the efficiency of the assay system, 3,500 microbial metabolite libraries were tested using the paper disc method, and KB0699 was found to inhibit the HDAC1 and MTA1 interaction without any toxicity to the wild-type yeast. Furthermore, KB0699 blocked the interaction of HDAC1 and MTA1 in an in vitro GST pull down assay and induced morphological changes in B16/BL6 melanoma cells, indicating the interruption of the HDAC1 complex function. Accordingly, these results demonstrated that the yeast assay strain developed in this study could be a valuable tool for the isolation of a HDAC1 complex disruptor.

The effect of melatonin on cardio fibrosis in juvenile rats with pressure overload and deregulation of HDACs

  • Wu, Yao;Si, Feifei;Luo, Li;Jing, Fengchuan;Jiang, Kunfeng;Zhou, Jiwei;Yi, Qijian
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.22 no.6
    • /
    • pp.607-616
    • /
    • 2018
  • The effect of melatonin on juveniles with cardio fibrosis is poorly understood. We investigated whether HDACs participate in the anti-fibrotic processes regulated by melatonin during hypertrophic remodeling. Abdominal aortic constriction (AAC) was employed in juvenile rats resulting in pressure overload-induced ventricular hypertrophy and melatonin was subsequently decreased via continuous light exposure for 5 weeks after surgery. AAC rats displayed an increased cross-sectional area of myocardial fibers and significantly elevated collagen deposition compared to sham-operated rats, as measured by HE and Masson Trichrome staining. Continuous light exposure following surgery exacerbated the increase in the cross-sectional area of myocardial fibers. The expression of HDAC1, HDAC2, HDAC3, HDAC4 and HDAC6 genes were all significantly enhanced in AAC rats with light exposure relative to the other rats. Moreover, the protein level of $TNF-{\alpha}$ was also upregulated in the AAC light exposure groups when compared with the sham. However, Smad4 protein expression was unchanged in the juveniles' hearts. In contrast, beginning 5 weeks after the operation, the AAC rats were treated with melatonin (10 mg/kg, intraperitoneal injection every evening) or vehicle 4 weeks, and sham rats were given vehicle. The changes in the histological measures of cardio fibrosis and the gene expressions of HDAC1, HDAC2, HDAC3, HDAC4 and HDAC6 were attenuated by melatonin administration. The results reveal that melatonin plays a role in the development of cardio fibrosis and the expression of HDAC1, HDAC2, HDAC3, HDAC4 and HDAC6 in cardiomyocytes.

Effects of Down-regulation of HDAC6 Expression on Proliferation, Cell Cycling and Migration of Esophageal Squamous Cell Carcinoma Cells and Related Molecular Mechanisms

  • Li, Ning;Tie, Xiao-Jing;Liu, Pei-Jie;Zhang, Yan;Ren, Hong-Zheng;Gao, Xin;Xu, Zhi-Qiao
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.14 no.2
    • /
    • pp.685-689
    • /
    • 2013
  • Objective: To study the effects of down-regulation of HDAC6 expression on proliferation, cell cycling and migration of esophageal squamous cell carcinoma (ESCC) cells and related molecular mechanisms. Methods: ESCC cell line EC9706 cells were randomly divided into untreated (with no transfection), control siRNA (transfected with control siRNA) and HDAC6 siRNA (transfected with HDAC6 small interfering RNA) groups. Effects of HDAC6 siRNA interference on expression of HDAC6 mRNA and protein in EC9706 cells were investigated by semi-quantitative RT-PCR, Western blotting and immunocytochemistry methods. Effects of down-regulation of HDAC6 expression on cell proliferation, cell cycle, and cell migration were studied using a CCK-8 kit, flow cytometry and Boyden chambers, respectively. Changes of mRNA and protein expression levels of cell cycle related factor (p21) and cell migration related factor (E-cadherin) were investigated by semi-quantitative RT-PCR and Western blotting methods. Results: After transfection of HDAC6 siRNA, the expression of HDAC6 mRNA and protein in EC9706 cells was significantly downregulated. In the HDAC6 siRNA group, cell proliferation was markedly inhibited, the percentage of cells in G0/G1 phase evidently increased and the percentage of cells in S phase decreased, and the number of migrating cells significantly and obviously decreased. The mRNA and protein expression levels of p21 and E-cadherin in the HDAC6 siRNA group were significantly higher than those in the untreated group and the control siRNA group, respectively. Conclusions: HDAC6 siRNA can effectively downregulate the expression of HDAC6 mRNA and protein in EC9706 cells. Down-regulation of HDAC6 expression can obviously inhibit cell proliferation, arrest cell cycling in the G0/G1 phase and reduce cell migration. The latter two functions may be closely related with the elevation of mRNA and protein expression of p21 and E-cadherin.

Partial Cloning of Histone Deacetylase Genes from Ganoderma lucidum. (영지에서 Histone Deacetylase 유전자의 부분 클로닝)

  • Kim Sunkyung;Kum Joohee;Choi Hyoung T.
    • Korean Journal of Microbiology
    • /
    • v.40 no.3
    • /
    • pp.226-229
    • /
    • 2004
  • Histone deacetylase (HDAC) removes acetyl group in lysine residue of histone protein, which is transferred by histone acetylase. HDAC is important in the stabilization and regulation of gene expression in eukaryotic organisms. PCR has been carried out to clone HDAC genes using cDNA library and genomic DNA as the templates from Ganoderma lucidum isolated in Korea. One 470 bp cDNA gene fragment, and 3 genomic HDAC fragments (585 bp, 589 bp, 630 bp) were amplified. When their deduced amino acid sequences were compared with other fungal HDACs, they showed 59-72% homology.

HDAC4 Regulates Muscle Fiber Type-Specific Gene Expression Programs

  • Cohen, Todd J.;Choi, Moon-Chang;Kapur, Meghan;Lira, Vitor A.;Yan, Zhen;Yao, Tso-Pang
    • Molecules and Cells
    • /
    • v.38 no.4
    • /
    • pp.343-348
    • /
    • 2015
  • Fiber type-specific programs controlled by the transcription factor MEF2 dictate muscle functionality. Here, we show that HDAC4, a potent MEF2 inhibitor, is predominantly localized to the nuclei in fast/glycolytic fibers in contrast to the sarcoplasm in slow/oxidative fibers. The cytoplasmic localization is associated with HDAC4 hyper-phosphorylation in slow/oxidative-fibers. Genetic reprogramming of fast/glycolytic fibers to oxidative fibers by active CaMKII or calcineurin leads to increased HDAC4 phosphorylation, HDAC4 nuclear export, and an increase in markers associated with oxidative fibers. Indeed, HDAC4 represses the MEF2-dependent, PGC-$1{\alpha}$-mediated oxidative metabolic gene program. Thus differential phosphorylation and localization of HDAC4 contributes to establishing fiber type-specific transcriptional programs.

miR-335 Targets SIAH2 and Confers Sensitivity to Anti-Cancer Drugs by Increasing the Expression of HDAC3

  • Kim, Youngmi;Kim, Hyuna;Park, Deokbum;Jeoung, Dooil
    • Molecules and Cells
    • /
    • v.38 no.6
    • /
    • pp.562-572
    • /
    • 2015
  • We previously reported the role of histone deacetylase 3 (HDAC3) in response to anti-cancer drugs. The decreased expression of HDAC3 in anti-cancer drug-resistant cancer cell line is responsible for the resistance to anti-cancer drugs. In this study, we investigated molecular mechanisms associated with regulation of HDAC3 expression. MG132, an inhibitor of proteasomal degradation, induced the expression of HDAC3 in various anti-cancer drug-resistant cancer cell lines. Ubiquitination of HDAC3 was observed in various anti-cancer drug-resistant cancer cell lines. HDAC3 showed an interaction with SIAH2, an ubiquitin E3 ligase, that has increased expression in various anti-cancer drug-resistant cancer cell lines. miRNA array analysis showed the decreased expression of miR-335 in these cells. Targetscan analysis predicted the binding of miR-335 to the 3'-UTR of SIAH2. miR-335-mediated increased sensitivity to anti-cancer drugs was associated with its effect on HDAC3 and SIAH2 expression. miR-335 exerted apoptotic effects and inhibited ubiquitination of HDAC3 in anti-cancer drug-resistant cancer cell lines. miR-335 negatively regulated the invasion, migration, and growth rate of cancer cells. The mouse xenograft model showed that miR-335 negatively regulated the tumorigenic potential of cancer cells. The down-regulation of SIAH2 conferred sensitivity to anti-cancer drugs. The results of the study indicated that the miR-335/SIAH2/HDAC3 axis regulates the response to anti-cancer drugs.